L(s) = 1 | − i·2-s − 4-s − 0.646i·5-s + (2.44 − i)7-s + i·8-s − 0.646·10-s + (−2.79 + 1.79i)11-s − 3.09·13-s + (−1 − 2.44i)14-s + 16-s − 3.74·17-s − 5.54·19-s + 0.646i·20-s + (1.79 + 2.79i)22-s − 4·23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s − 0.288i·5-s + (0.925 − 0.377i)7-s + 0.353i·8-s − 0.204·10-s + (−0.841 + 0.540i)11-s − 0.858·13-s + (−0.267 − 0.654i)14-s + 0.250·16-s − 0.907·17-s − 1.27·19-s + 0.144i·20-s + (0.381 + 0.595i)22-s − 0.834·23-s + ⋯ |
Λ(s)=(=(1386s/2ΓC(s)L(s)(−0.818−0.575i)Λ(2−s)
Λ(s)=(=(1386s/2ΓC(s+1/2)L(s)(−0.818−0.575i)Λ(1−s)
Degree: |
2 |
Conductor: |
1386
= 2⋅32⋅7⋅11
|
Sign: |
−0.818−0.575i
|
Analytic conductor: |
11.0672 |
Root analytic conductor: |
3.32675 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1386(307,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1386, ( :1/2), −0.818−0.575i)
|
Particular Values
L(1) |
≈ |
0.3484802064 |
L(21) |
≈ |
0.3484802064 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 3 | 1 |
| 7 | 1+(−2.44+i)T |
| 11 | 1+(2.79−1.79i)T |
good | 5 | 1+0.646iT−5T2 |
| 13 | 1+3.09T+13T2 |
| 17 | 1+3.74T+17T2 |
| 19 | 1+5.54T+19T2 |
| 23 | 1+4T+23T2 |
| 29 | 1+7.58iT−29T2 |
| 31 | 1−1.15iT−31T2 |
| 37 | 1+5.58T+37T2 |
| 41 | 1+5.03T+41T2 |
| 43 | 1+11.1iT−43T2 |
| 47 | 1−5.03iT−47T2 |
| 53 | 1−2.41T+53T2 |
| 59 | 1−3.09iT−59T2 |
| 61 | 1+9.28T+61T2 |
| 67 | 1−1.58T+67T2 |
| 71 | 1+2T+71T2 |
| 73 | 1+6.32T+73T2 |
| 79 | 1−4iT−79T2 |
| 83 | 1+9.15T+83T2 |
| 89 | 1−9.79iT−89T2 |
| 97 | 1−15.9iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.078198593159204957625293071808, −8.388997575106378603937073990968, −7.65544020786271130556750879237, −6.73993079734012989180684356485, −5.43889134487594145638606215481, −4.65228969717493853598518622416, −4.10009880352403347777561178965, −2.53761138395734820327141860571, −1.83718892309898971538699177901, −0.13063235393916447917351413837,
1.92430273093018105522092504308, 3.03684669497185071045077912079, 4.46816497701266335204399505408, 5.03468510411286841875783342983, 5.96690444497082575979600804959, 6.84472729598756716024855387930, 7.62480072870278002279339497565, 8.500714154532331950852086135198, 8.844625311322821311704352027082, 10.10975072242941527611152781429