Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1386,2,Mod(307,1386)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1386, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1386.307");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1386.e (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 8.0.12745506816.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 154) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
307.1 |
|
− | 1.00000i | 0 | −1.00000 | − | 3.09557i | 0 | −2.44949 | − | 1.00000i | 1.00000i | 0 | −3.09557 | ||||||||||||||||||||||||||||||||||||||
307.2 | − | 1.00000i | 0 | −1.00000 | − | 0.646084i | 0 | 2.44949 | − | 1.00000i | 1.00000i | 0 | −0.646084 | |||||||||||||||||||||||||||||||||||||||
307.3 | − | 1.00000i | 0 | −1.00000 | 0.646084i | 0 | −2.44949 | − | 1.00000i | 1.00000i | 0 | 0.646084 | ||||||||||||||||||||||||||||||||||||||||
307.4 | − | 1.00000i | 0 | −1.00000 | 3.09557i | 0 | 2.44949 | − | 1.00000i | 1.00000i | 0 | 3.09557 | ||||||||||||||||||||||||||||||||||||||||
307.5 | 1.00000i | 0 | −1.00000 | − | 3.09557i | 0 | 2.44949 | + | 1.00000i | − | 1.00000i | 0 | 3.09557 | |||||||||||||||||||||||||||||||||||||||
307.6 | 1.00000i | 0 | −1.00000 | − | 0.646084i | 0 | −2.44949 | + | 1.00000i | − | 1.00000i | 0 | 0.646084 | |||||||||||||||||||||||||||||||||||||||
307.7 | 1.00000i | 0 | −1.00000 | 0.646084i | 0 | 2.44949 | + | 1.00000i | − | 1.00000i | 0 | −0.646084 | ||||||||||||||||||||||||||||||||||||||||
307.8 | 1.00000i | 0 | −1.00000 | 3.09557i | 0 | −2.44949 | + | 1.00000i | − | 1.00000i | 0 | −3.09557 | ||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
11.b | odd | 2 | 1 | inner |
77.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1386.2.e.b | 8 | |
3.b | odd | 2 | 1 | 154.2.c.a | ✓ | 8 | |
7.b | odd | 2 | 1 | inner | 1386.2.e.b | 8 | |
11.b | odd | 2 | 1 | inner | 1386.2.e.b | 8 | |
12.b | even | 2 | 1 | 1232.2.e.e | 8 | ||
21.c | even | 2 | 1 | 154.2.c.a | ✓ | 8 | |
21.g | even | 6 | 2 | 1078.2.i.b | 16 | ||
21.h | odd | 6 | 2 | 1078.2.i.b | 16 | ||
33.d | even | 2 | 1 | 154.2.c.a | ✓ | 8 | |
77.b | even | 2 | 1 | inner | 1386.2.e.b | 8 | |
84.h | odd | 2 | 1 | 1232.2.e.e | 8 | ||
132.d | odd | 2 | 1 | 1232.2.e.e | 8 | ||
231.h | odd | 2 | 1 | 154.2.c.a | ✓ | 8 | |
231.k | odd | 6 | 2 | 1078.2.i.b | 16 | ||
231.l | even | 6 | 2 | 1078.2.i.b | 16 | ||
924.n | even | 2 | 1 | 1232.2.e.e | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
154.2.c.a | ✓ | 8 | 3.b | odd | 2 | 1 | |
154.2.c.a | ✓ | 8 | 21.c | even | 2 | 1 | |
154.2.c.a | ✓ | 8 | 33.d | even | 2 | 1 | |
154.2.c.a | ✓ | 8 | 231.h | odd | 2 | 1 | |
1078.2.i.b | 16 | 21.g | even | 6 | 2 | ||
1078.2.i.b | 16 | 21.h | odd | 6 | 2 | ||
1078.2.i.b | 16 | 231.k | odd | 6 | 2 | ||
1078.2.i.b | 16 | 231.l | even | 6 | 2 | ||
1232.2.e.e | 8 | 12.b | even | 2 | 1 | ||
1232.2.e.e | 8 | 84.h | odd | 2 | 1 | ||
1232.2.e.e | 8 | 132.d | odd | 2 | 1 | ||
1232.2.e.e | 8 | 924.n | even | 2 | 1 | ||
1386.2.e.b | 8 | 1.a | even | 1 | 1 | trivial | |
1386.2.e.b | 8 | 7.b | odd | 2 | 1 | inner | |
1386.2.e.b | 8 | 11.b | odd | 2 | 1 | inner | |
1386.2.e.b | 8 | 77.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|