Properties

Label 1386.2.e.b
Level 13861386
Weight 22
Character orbit 1386.e
Analytic conductor 11.06711.067
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1386,2,Mod(307,1386)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1386, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1386.307");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1386=232711 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1386.e (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 11.067265720111.0672657201
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.12745506816.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+23x4+1 x^{8} + 23x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 23 2^{3}
Twist minimal: no (minimal twist has level 154)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2q4β2q5+(β7+β3β1)q7+β1q8+β3q10+(β5β11)q11β7q13+(β6+β21)q14++(2β72β35β1)q98+O(q100) q - \beta_1 q^{2} - q^{4} - \beta_{2} q^{5} + (\beta_{7} + \beta_{3} - \beta_1) q^{7} + \beta_1 q^{8} + \beta_{3} q^{10} + ( - \beta_{5} - \beta_1 - 1) q^{11} - \beta_{7} q^{13} + (\beta_{6} + \beta_{2} - 1) q^{14}+ \cdots + ( - 2 \beta_{7} - 2 \beta_{3} - 5 \beta_1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q44q118q14+8q164q2232q238q37+4q44+40q49+56q53+8q5624q588q6424q67+24q7016q714q7716q86++32q92+O(q100) 8 q - 8 q^{4} - 4 q^{11} - 8 q^{14} + 8 q^{16} - 4 q^{22} - 32 q^{23} - 8 q^{37} + 4 q^{44} + 40 q^{49} + 56 q^{53} + 8 q^{56} - 24 q^{58} - 8 q^{64} - 24 q^{67} + 24 q^{70} - 16 q^{71} - 4 q^{77} - 16 q^{86}+ \cdots + 32 q^{92}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+23x4+1 x^{8} + 23x^{4} + 1 : Copy content Toggle raw display

β1\beta_{1}== (ν6+24ν2)/5 ( \nu^{6} + 24\nu^{2} ) / 5 Copy content Toggle raw display
β2\beta_{2}== (ν7+24ν3+5ν)/5 ( \nu^{7} + 24\nu^{3} + 5\nu ) / 5 Copy content Toggle raw display
β3\beta_{3}== (ν7+24ν35ν)/5 ( \nu^{7} + 24\nu^{3} - 5\nu ) / 5 Copy content Toggle raw display
β4\beta_{4}== (3ν6ν467ν29)/5 ( -3\nu^{6} - \nu^{4} - 67\nu^{2} - 9 ) / 5 Copy content Toggle raw display
β5\beta_{5}== (3ν6+ν467ν2+9)/5 ( -3\nu^{6} + \nu^{4} - 67\nu^{2} + 9 ) / 5 Copy content Toggle raw display
β6\beta_{6}== (5ν7ν5115ν324ν)/5 ( -5\nu^{7} - \nu^{5} - 115\nu^{3} - 24\nu ) / 5 Copy content Toggle raw display
β7\beta_{7}== (5ν7+ν5115ν3+24ν)/5 ( -5\nu^{7} + \nu^{5} - 115\nu^{3} + 24\nu ) / 5 Copy content Toggle raw display
ν\nu== (β3+β2)/2 ( -\beta_{3} + \beta_{2} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β5+β4+6β1)/2 ( \beta_{5} + \beta_{4} + 6\beta_1 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (β7+β6+5β3+5β2)/2 ( \beta_{7} + \beta_{6} + 5\beta_{3} + 5\beta_{2} ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (5β55β418)/2 ( 5\beta_{5} - 5\beta_{4} - 18 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (5β75β6+24β324β2)/2 ( 5\beta_{7} - 5\beta_{6} + 24\beta_{3} - 24\beta_{2} ) / 2 Copy content Toggle raw display
ν6\nu^{6}== 12β512β467β1 -12\beta_{5} - 12\beta_{4} - 67\beta_1 Copy content Toggle raw display
ν7\nu^{7}== (24β724β6115β3115β2)/2 ( -24\beta_{7} - 24\beta_{6} - 115\beta_{3} - 115\beta_{2} ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1386Z)×\left(\mathbb{Z}/1386\mathbb{Z}\right)^\times.

nn 155155 199199 11351135
χ(n)\chi(n) 11 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
307.1
1.54779 + 1.54779i
0.323042 + 0.323042i
−0.323042 0.323042i
−1.54779 1.54779i
−1.54779 + 1.54779i
−0.323042 + 0.323042i
0.323042 0.323042i
1.54779 1.54779i
1.00000i 0 −1.00000 3.09557i 0 −2.44949 1.00000i 1.00000i 0 −3.09557
307.2 1.00000i 0 −1.00000 0.646084i 0 2.44949 1.00000i 1.00000i 0 −0.646084
307.3 1.00000i 0 −1.00000 0.646084i 0 −2.44949 1.00000i 1.00000i 0 0.646084
307.4 1.00000i 0 −1.00000 3.09557i 0 2.44949 1.00000i 1.00000i 0 3.09557
307.5 1.00000i 0 −1.00000 3.09557i 0 2.44949 + 1.00000i 1.00000i 0 3.09557
307.6 1.00000i 0 −1.00000 0.646084i 0 −2.44949 + 1.00000i 1.00000i 0 0.646084
307.7 1.00000i 0 −1.00000 0.646084i 0 2.44949 + 1.00000i 1.00000i 0 −0.646084
307.8 1.00000i 0 −1.00000 3.09557i 0 −2.44949 + 1.00000i 1.00000i 0 −3.09557
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 307.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
11.b odd 2 1 inner
77.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1386.2.e.b 8
3.b odd 2 1 154.2.c.a 8
7.b odd 2 1 inner 1386.2.e.b 8
11.b odd 2 1 inner 1386.2.e.b 8
12.b even 2 1 1232.2.e.e 8
21.c even 2 1 154.2.c.a 8
21.g even 6 2 1078.2.i.b 16
21.h odd 6 2 1078.2.i.b 16
33.d even 2 1 154.2.c.a 8
77.b even 2 1 inner 1386.2.e.b 8
84.h odd 2 1 1232.2.e.e 8
132.d odd 2 1 1232.2.e.e 8
231.h odd 2 1 154.2.c.a 8
231.k odd 6 2 1078.2.i.b 16
231.l even 6 2 1078.2.i.b 16
924.n even 2 1 1232.2.e.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
154.2.c.a 8 3.b odd 2 1
154.2.c.a 8 21.c even 2 1
154.2.c.a 8 33.d even 2 1
154.2.c.a 8 231.h odd 2 1
1078.2.i.b 16 21.g even 6 2
1078.2.i.b 16 21.h odd 6 2
1078.2.i.b 16 231.k odd 6 2
1078.2.i.b 16 231.l even 6 2
1232.2.e.e 8 12.b even 2 1
1232.2.e.e 8 84.h odd 2 1
1232.2.e.e 8 132.d odd 2 1
1232.2.e.e 8 924.n even 2 1
1386.2.e.b 8 1.a even 1 1 trivial
1386.2.e.b 8 7.b odd 2 1 inner
1386.2.e.b 8 11.b odd 2 1 inner
1386.2.e.b 8 77.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1386,[χ])S_{2}^{\mathrm{new}}(1386, [\chi]):

T54+10T52+4 T_{5}^{4} + 10T_{5}^{2} + 4 Copy content Toggle raw display
T13410T132+4 T_{13}^{4} - 10T_{13}^{2} + 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+1)4 (T^{2} + 1)^{4} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 (T4+10T2+4)2 (T^{4} + 10 T^{2} + 4)^{2} Copy content Toggle raw display
77 (T410T2+49)2 (T^{4} - 10 T^{2} + 49)^{2} Copy content Toggle raw display
1111 (T4+2T3++121)2 (T^{4} + 2 T^{3} + \cdots + 121)^{2} Copy content Toggle raw display
1313 (T410T2+4)2 (T^{4} - 10 T^{2} + 4)^{2} Copy content Toggle raw display
1717 (T214)4 (T^{2} - 14)^{4} Copy content Toggle raw display
1919 (T434T2+100)2 (T^{4} - 34 T^{2} + 100)^{2} Copy content Toggle raw display
2323 (T+4)8 (T + 4)^{8} Copy content Toggle raw display
2929 (T4+60T2+144)2 (T^{4} + 60 T^{2} + 144)^{2} Copy content Toggle raw display
3131 (T4+76T2+100)2 (T^{4} + 76 T^{2} + 100)^{2} Copy content Toggle raw display
3737 (T2+2T20)4 (T^{2} + 2 T - 20)^{4} Copy content Toggle raw display
4141 (T4124T2+2500)2 (T^{4} - 124 T^{2} + 2500)^{2} Copy content Toggle raw display
4343 (T4+176T2+6400)2 (T^{4} + 176 T^{2} + 6400)^{2} Copy content Toggle raw display
4747 (T4+124T2+2500)2 (T^{4} + 124 T^{2} + 2500)^{2} Copy content Toggle raw display
5353 (T214T+28)4 (T^{2} - 14 T + 28)^{4} Copy content Toggle raw display
5959 (T4+10T2+4)2 (T^{4} + 10 T^{2} + 4)^{2} Copy content Toggle raw display
6161 (T490T2+324)2 (T^{4} - 90 T^{2} + 324)^{2} Copy content Toggle raw display
6767 (T2+6T12)4 (T^{2} + 6 T - 12)^{4} Copy content Toggle raw display
7171 (T+2)8 (T + 2)^{8} Copy content Toggle raw display
7373 (T4300T2+10404)2 (T^{4} - 300 T^{2} + 10404)^{2} Copy content Toggle raw display
7979 (T2+16)4 (T^{2} + 16)^{4} Copy content Toggle raw display
8383 (T4250T2+13924)2 (T^{4} - 250 T^{2} + 13924)^{2} Copy content Toggle raw display
8989 (T2+96)4 (T^{2} + 96)^{4} Copy content Toggle raw display
9797 (T4+328T2+18496)2 (T^{4} + 328 T^{2} + 18496)^{2} Copy content Toggle raw display
show more
show less