L(s) = 1 | + i·2-s − 4-s − 0.646i·5-s + (−2.44 + i)7-s − i·8-s + 0.646·10-s + (−2.79 − 1.79i)11-s + 3.09·13-s + (−1 − 2.44i)14-s + 16-s + 3.74·17-s + 5.54·19-s + 0.646i·20-s + (1.79 − 2.79i)22-s − 4·23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s − 0.288i·5-s + (−0.925 + 0.377i)7-s − 0.353i·8-s + 0.204·10-s + (−0.841 − 0.540i)11-s + 0.858·13-s + (−0.267 − 0.654i)14-s + 0.250·16-s + 0.907·17-s + 1.27·19-s + 0.144i·20-s + (0.381 − 0.595i)22-s − 0.834·23-s + ⋯ |
Λ(s)=(=(1386s/2ΓC(s)L(s)(0.181−0.983i)Λ(2−s)
Λ(s)=(=(1386s/2ΓC(s+1/2)L(s)(0.181−0.983i)Λ(1−s)
Degree: |
2 |
Conductor: |
1386
= 2⋅32⋅7⋅11
|
Sign: |
0.181−0.983i
|
Analytic conductor: |
11.0672 |
Root analytic conductor: |
3.32675 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1386(307,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1386, ( :1/2), 0.181−0.983i)
|
Particular Values
L(1) |
≈ |
1.321755826 |
L(21) |
≈ |
1.321755826 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1 |
| 7 | 1+(2.44−i)T |
| 11 | 1+(2.79+1.79i)T |
good | 5 | 1+0.646iT−5T2 |
| 13 | 1−3.09T+13T2 |
| 17 | 1−3.74T+17T2 |
| 19 | 1−5.54T+19T2 |
| 23 | 1+4T+23T2 |
| 29 | 1−7.58iT−29T2 |
| 31 | 1−1.15iT−31T2 |
| 37 | 1+5.58T+37T2 |
| 41 | 1−5.03T+41T2 |
| 43 | 1−11.1iT−43T2 |
| 47 | 1−5.03iT−47T2 |
| 53 | 1−2.41T+53T2 |
| 59 | 1−3.09iT−59T2 |
| 61 | 1−9.28T+61T2 |
| 67 | 1−1.58T+67T2 |
| 71 | 1+2T+71T2 |
| 73 | 1−6.32T+73T2 |
| 79 | 1+4iT−79T2 |
| 83 | 1−9.15T+83T2 |
| 89 | 1−9.79iT−89T2 |
| 97 | 1−15.9iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.593362763762765886235443742670, −8.854476416169683288136895372634, −8.144349036230312957186600809772, −7.33778460813291288732230336968, −6.38991051307602661919373967885, −5.64941013223157986264846239999, −5.03578724969221027350554088949, −3.62711239940977923416926413841, −2.94557002962312817736206494156, −1.03241790800917581745856716717,
0.69457561259195189409199766367, 2.23684250662594339649195938343, 3.28403455345688970922033534605, 3.92260474534398067938297659122, 5.19422021301334545663294515132, 5.97826120838558245981870547394, 7.06116633905250795341151243492, 7.78238794599527531614589292270, 8.726015165121194172135476407321, 9.756898723467485391864483258333