L(s) = 1 | − i·2-s − 4-s + 3.09i·5-s + (2.44 − i)7-s + i·8-s + 3.09·10-s + (1.79 − 2.79i)11-s + 0.646·13-s + (−1 − 2.44i)14-s + 16-s + 3.74·17-s − 1.80·19-s − 3.09i·20-s + (−2.79 − 1.79i)22-s − 4·23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s + 1.38i·5-s + (0.925 − 0.377i)7-s + 0.353i·8-s + 0.978·10-s + (0.540 − 0.841i)11-s + 0.179·13-s + (−0.267 − 0.654i)14-s + 0.250·16-s + 0.907·17-s − 0.413·19-s − 0.692i·20-s + (−0.595 − 0.381i)22-s − 0.834·23-s + ⋯ |
Λ(s)=(=(1386s/2ΓC(s)L(s)(0.983+0.181i)Λ(2−s)
Λ(s)=(=(1386s/2ΓC(s+1/2)L(s)(0.983+0.181i)Λ(1−s)
Degree: |
2 |
Conductor: |
1386
= 2⋅32⋅7⋅11
|
Sign: |
0.983+0.181i
|
Analytic conductor: |
11.0672 |
Root analytic conductor: |
3.32675 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1386(307,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1386, ( :1/2), 0.983+0.181i)
|
Particular Values
L(1) |
≈ |
1.841446377 |
L(21) |
≈ |
1.841446377 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 3 | 1 |
| 7 | 1+(−2.44+i)T |
| 11 | 1+(−1.79+2.79i)T |
good | 5 | 1−3.09iT−5T2 |
| 13 | 1−0.646T+13T2 |
| 17 | 1−3.74T+17T2 |
| 19 | 1+1.80T+19T2 |
| 23 | 1+4T+23T2 |
| 29 | 1−1.58iT−29T2 |
| 31 | 1−8.64iT−31T2 |
| 37 | 1−3.58T+37T2 |
| 41 | 1−9.93T+41T2 |
| 43 | 1−7.16iT−43T2 |
| 47 | 1+9.93iT−47T2 |
| 53 | 1−11.5T+53T2 |
| 59 | 1+0.646iT−59T2 |
| 61 | 1−1.93T+61T2 |
| 67 | 1+7.58T+67T2 |
| 71 | 1+2T+71T2 |
| 73 | 1−16.1T+73T2 |
| 79 | 1−4iT−79T2 |
| 83 | 1+12.8T+83T2 |
| 89 | 1−9.79iT−89T2 |
| 97 | 1−8.50iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.830026426971797215981268325377, −8.736266638810156945229863180902, −8.017902718413666291110799889173, −7.16347543025785488377431406072, −6.26843143484428845652848425835, −5.35414760262609230872059157172, −4.11202932288474047138367090809, −3.40794353248715910125853897215, −2.42626054674739687636906035675, −1.16096228776303297672964214644,
0.969545393288141126297892176315, 2.13687339910709612899241854598, 4.10652268999401654993347048353, 4.51273341886007975622237289294, 5.52095434584704191252006447440, 6.05849365707748282156146407547, 7.44409209947828515942336943122, 7.952108066750676008191235048685, 8.731440761961205795546182828538, 9.343420806576129491358655304142