L(s) = 1 | + (−8.02 − 4.63i)3-s + (−9.68 + 5.59i)5-s + (−5.50 − 48.6i)7-s + (2.44 + 4.22i)9-s + (−62.7 + 108. i)11-s − 130. i·13-s + 103.·15-s + (251. + 145. i)17-s + (−364. + 210. i)19-s + (−181. + 416. i)21-s + (417. + 723. i)23-s + (62.5 − 108. i)25-s + 705. i·27-s + 689.·29-s + (155. + 89.5i)31-s + ⋯ |
L(s) = 1 | + (−0.891 − 0.514i)3-s + (−0.387 + 0.223i)5-s + (−0.112 − 0.993i)7-s + (0.0301 + 0.0522i)9-s + (−0.518 + 0.898i)11-s − 0.770i·13-s + 0.460·15-s + (0.871 + 0.503i)17-s + (−1.01 + 0.583i)19-s + (−0.411 + 0.943i)21-s + (0.789 + 1.36i)23-s + (0.100 − 0.173i)25-s + 0.967i·27-s + 0.820·29-s + (0.161 + 0.0931i)31-s + ⋯ |
Λ(s)=(=(140s/2ΓC(s)L(s)(0.280−0.959i)Λ(5−s)
Λ(s)=(=(140s/2ΓC(s+2)L(s)(0.280−0.959i)Λ(1−s)
Degree: |
2 |
Conductor: |
140
= 22⋅5⋅7
|
Sign: |
0.280−0.959i
|
Analytic conductor: |
14.4717 |
Root analytic conductor: |
3.80418 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ140(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 140, ( :2), 0.280−0.959i)
|
Particular Values
L(25) |
≈ |
0.468785+0.351429i |
L(21) |
≈ |
0.468785+0.351429i |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(9.68−5.59i)T |
| 7 | 1+(5.50+48.6i)T |
good | 3 | 1+(8.02+4.63i)T+(40.5+70.1i)T2 |
| 11 | 1+(62.7−108.i)T+(−7.32e3−1.26e4i)T2 |
| 13 | 1+130.iT−2.85e4T2 |
| 17 | 1+(−251.−145.i)T+(4.17e4+7.23e4i)T2 |
| 19 | 1+(364.−210.i)T+(6.51e4−1.12e5i)T2 |
| 23 | 1+(−417.−723.i)T+(−1.39e5+2.42e5i)T2 |
| 29 | 1−689.T+7.07e5T2 |
| 31 | 1+(−155.−89.5i)T+(4.61e5+7.99e5i)T2 |
| 37 | 1+(−1.18e3−2.05e3i)T+(−9.37e5+1.62e6i)T2 |
| 41 | 1+8.95iT−2.82e6T2 |
| 43 | 1+3.41e3T+3.41e6T2 |
| 47 | 1+(−1.79e3+1.03e3i)T+(2.43e6−4.22e6i)T2 |
| 53 | 1+(1.18e3−2.06e3i)T+(−3.94e6−6.83e6i)T2 |
| 59 | 1+(1.98e3+1.14e3i)T+(6.05e6+1.04e7i)T2 |
| 61 | 1+(−2.37e3+1.36e3i)T+(6.92e6−1.19e7i)T2 |
| 67 | 1+(−945.+1.63e3i)T+(−1.00e7−1.74e7i)T2 |
| 71 | 1+8.10e3T+2.54e7T2 |
| 73 | 1+(−831.−480.i)T+(1.41e7+2.45e7i)T2 |
| 79 | 1+(−4.18e3−7.25e3i)T+(−1.94e7+3.37e7i)T2 |
| 83 | 1+7.33e3iT−4.74e7T2 |
| 89 | 1+(−1.69e3+975.i)T+(3.13e7−5.43e7i)T2 |
| 97 | 1−4.68e3iT−8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.60648788886325522053966704844, −11.72352122340749936315840543594, −10.64842134840740146468836070585, −9.950987610647614498794314695907, −8.108800529684535481950148117881, −7.23410312384142115351980653643, −6.22603207804117927606194135083, −4.91169901375682631391714915375, −3.39460788872667980018130615346, −1.18205696290835281035465503994,
0.30377053107423277089112898293, 2.70506451057036517852497020315, 4.52060498522021747755219085762, 5.47514287965341984237746562993, 6.52675282910896993787075299316, 8.202299542390947710662456371216, 9.078554729695972401171510174245, 10.42989849451324258951379750356, 11.28436939994337143148021203735, 12.03280336967888828585021940736