Properties

Label 140.5.r.a.101.4
Level $140$
Weight $5$
Character 140.101
Analytic conductor $14.472$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [140,5,Mod(61,140)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(140, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("140.61");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 140 = 2^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 140.r (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4717948317\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 10 x^{19} + 1081 x^{18} - 9444 x^{17} + 488519 x^{16} - 3695380 x^{15} + 120074862 x^{14} + \cdots + 26\!\cdots\!01 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 5^{4}\cdot 7^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.4
Root \(0.500000 - 8.40136i\) of defining polynomial
Character \(\chi\) \(=\) 140.101
Dual form 140.5.r.a.61.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-8.02579 - 4.63369i) q^{3} +(-9.68246 + 5.59017i) q^{5} +(-5.50663 - 48.6896i) q^{7} +(2.44218 + 4.22998i) q^{9} +(-62.7346 + 108.660i) q^{11} -130.285i q^{13} +103.612 q^{15} +(251.925 + 145.449i) q^{17} +(-364.633 + 210.521i) q^{19} +(-181.417 + 416.288i) q^{21} +(417.626 + 723.350i) q^{23} +(62.5000 - 108.253i) q^{25} +705.393i q^{27} +689.798 q^{29} +(155.091 + 89.5420i) q^{31} +(1006.99 - 581.386i) q^{33} +(325.501 + 440.652i) q^{35} +(1187.06 + 2056.04i) q^{37} +(-603.701 + 1045.64i) q^{39} -8.95378i q^{41} -3416.97 q^{43} +(-47.2926 - 27.3044i) q^{45} +(1799.99 - 1039.22i) q^{47} +(-2340.35 + 536.232i) q^{49} +(-1347.93 - 2334.68i) q^{51} +(-1189.75 + 2060.70i) q^{53} -1402.79i q^{55} +3901.96 q^{57} +(-1988.55 - 1148.09i) q^{59} +(2372.90 - 1369.99i) q^{61} +(192.508 - 142.202i) q^{63} +(728.316 + 1261.48i) q^{65} +(945.729 - 1638.05i) q^{67} -7740.60i q^{69} -8103.36 q^{71} +(831.523 + 480.080i) q^{73} +(-1003.22 + 579.211i) q^{75} +(5636.05 + 2456.18i) q^{77} +(4189.37 + 7256.20i) q^{79} +(3466.39 - 6003.96i) q^{81} -7331.34i q^{83} -3252.34 q^{85} +(-5536.17 - 3196.31i) q^{87} +(1690.03 - 975.741i) q^{89} +(-6343.53 + 717.433i) q^{91} +(-829.820 - 1437.29i) q^{93} +(2353.70 - 4076.72i) q^{95} +4683.12i q^{97} -612.837 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 18 q^{3} - 22 q^{7} + 234 q^{9} - 150 q^{11} + 100 q^{15} + 864 q^{17} + 978 q^{19} - 2576 q^{21} - 666 q^{23} + 1250 q^{25} - 312 q^{29} + 5196 q^{31} - 384 q^{33} - 1050 q^{35} - 2900 q^{37} - 6720 q^{39}+ \cdots + 3060 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/140\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(101\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −8.02579 4.63369i −0.891754 0.514855i −0.0172383 0.999851i \(-0.505487\pi\)
−0.874516 + 0.484997i \(0.838821\pi\)
\(4\) 0 0
\(5\) −9.68246 + 5.59017i −0.387298 + 0.223607i
\(6\) 0 0
\(7\) −5.50663 48.6896i −0.112380 0.993665i
\(8\) 0 0
\(9\) 2.44218 + 4.22998i 0.0301504 + 0.0522220i
\(10\) 0 0
\(11\) −62.7346 + 108.660i −0.518468 + 0.898013i 0.481302 + 0.876555i \(0.340164\pi\)
−0.999770 + 0.0214579i \(0.993169\pi\)
\(12\) 0 0
\(13\) 130.285i 0.770918i −0.922725 0.385459i \(-0.874043\pi\)
0.922725 0.385459i \(-0.125957\pi\)
\(14\) 0 0
\(15\) 103.612 0.460500
\(16\) 0 0
\(17\) 251.925 + 145.449i 0.871713 + 0.503284i 0.867917 0.496709i \(-0.165458\pi\)
0.00379573 + 0.999993i \(0.498792\pi\)
\(18\) 0 0
\(19\) −364.633 + 210.521i −1.01006 + 0.583161i −0.911210 0.411941i \(-0.864851\pi\)
−0.0988538 + 0.995102i \(0.531518\pi\)
\(20\) 0 0
\(21\) −181.417 + 416.288i −0.411377 + 0.943965i
\(22\) 0 0
\(23\) 417.626 + 723.350i 0.789463 + 1.36739i 0.926296 + 0.376796i \(0.122974\pi\)
−0.136833 + 0.990594i \(0.543692\pi\)
\(24\) 0 0
\(25\) 62.5000 108.253i 0.100000 0.173205i
\(26\) 0 0
\(27\) 705.393i 0.967617i
\(28\) 0 0
\(29\) 689.798 0.820211 0.410106 0.912038i \(-0.365492\pi\)
0.410106 + 0.912038i \(0.365492\pi\)
\(30\) 0 0
\(31\) 155.091 + 89.5420i 0.161385 + 0.0931758i 0.578517 0.815670i \(-0.303631\pi\)
−0.417132 + 0.908846i \(0.636965\pi\)
\(32\) 0 0
\(33\) 1006.99 581.386i 0.924692 0.533871i
\(34\) 0 0
\(35\) 325.501 + 440.652i 0.265715 + 0.359716i
\(36\) 0 0
\(37\) 1187.06 + 2056.04i 0.867098 + 1.50186i 0.864949 + 0.501860i \(0.167351\pi\)
0.00214865 + 0.999998i \(0.499316\pi\)
\(38\) 0 0
\(39\) −603.701 + 1045.64i −0.396911 + 0.687470i
\(40\) 0 0
\(41\) 8.95378i 0.00532646i −0.999996 0.00266323i \(-0.999152\pi\)
0.999996 0.00266323i \(-0.000847733\pi\)
\(42\) 0 0
\(43\) −3416.97 −1.84801 −0.924004 0.382384i \(-0.875103\pi\)
−0.924004 + 0.382384i \(0.875103\pi\)
\(44\) 0 0
\(45\) −47.2926 27.3044i −0.0233544 0.0134837i
\(46\) 0 0
\(47\) 1799.99 1039.22i 0.814844 0.470450i −0.0337914 0.999429i \(-0.510758\pi\)
0.848635 + 0.528979i \(0.177425\pi\)
\(48\) 0 0
\(49\) −2340.35 + 536.232i −0.974741 + 0.223337i
\(50\) 0 0
\(51\) −1347.93 2334.68i −0.518236 0.897611i
\(52\) 0 0
\(53\) −1189.75 + 2060.70i −0.423548 + 0.733607i −0.996284 0.0861333i \(-0.972549\pi\)
0.572735 + 0.819740i \(0.305882\pi\)
\(54\) 0 0
\(55\) 1402.79i 0.463732i
\(56\) 0 0
\(57\) 3901.96 1.20097
\(58\) 0 0
\(59\) −1988.55 1148.09i −0.571257 0.329815i 0.186394 0.982475i \(-0.440320\pi\)
−0.757651 + 0.652660i \(0.773653\pi\)
\(60\) 0 0
\(61\) 2372.90 1369.99i 0.637705 0.368179i −0.146025 0.989281i \(-0.546648\pi\)
0.783730 + 0.621102i \(0.213315\pi\)
\(62\) 0 0
\(63\) 192.508 142.202i 0.0485029 0.0358281i
\(64\) 0 0
\(65\) 728.316 + 1261.48i 0.172383 + 0.298575i
\(66\) 0 0
\(67\) 945.729 1638.05i 0.210677 0.364903i −0.741250 0.671229i \(-0.765767\pi\)
0.951927 + 0.306326i \(0.0990998\pi\)
\(68\) 0 0
\(69\) 7740.60i 1.62583i
\(70\) 0 0
\(71\) −8103.36 −1.60749 −0.803746 0.594973i \(-0.797163\pi\)
−0.803746 + 0.594973i \(0.797163\pi\)
\(72\) 0 0
\(73\) 831.523 + 480.080i 0.156037 + 0.0900882i 0.575986 0.817460i \(-0.304618\pi\)
−0.419948 + 0.907548i \(0.637952\pi\)
\(74\) 0 0
\(75\) −1003.22 + 579.211i −0.178351 + 0.102971i
\(76\) 0 0
\(77\) 5636.05 + 2456.18i 0.950590 + 0.414265i
\(78\) 0 0
\(79\) 4189.37 + 7256.20i 0.671266 + 1.16267i 0.977545 + 0.210725i \(0.0675823\pi\)
−0.306280 + 0.951941i \(0.599084\pi\)
\(80\) 0 0
\(81\) 3466.39 6003.96i 0.528332 0.915098i
\(82\) 0 0
\(83\) 7331.34i 1.06421i −0.846679 0.532105i \(-0.821401\pi\)
0.846679 0.532105i \(-0.178599\pi\)
\(84\) 0 0
\(85\) −3252.34 −0.450151
\(86\) 0 0
\(87\) −5536.17 3196.31i −0.731427 0.422290i
\(88\) 0 0
\(89\) 1690.03 975.741i 0.213361 0.123184i −0.389511 0.921022i \(-0.627356\pi\)
0.602872 + 0.797838i \(0.294023\pi\)
\(90\) 0 0
\(91\) −6343.53 + 717.433i −0.766035 + 0.0866360i
\(92\) 0 0
\(93\) −829.820 1437.29i −0.0959440 0.166180i
\(94\) 0 0
\(95\) 2353.70 4076.72i 0.260797 0.451714i
\(96\) 0 0
\(97\) 4683.12i 0.497728i 0.968538 + 0.248864i \(0.0800572\pi\)
−0.968538 + 0.248864i \(0.919943\pi\)
\(98\) 0 0
\(99\) −612.837 −0.0625280
\(100\) 0 0
\(101\) −10839.9 6258.42i −1.06263 0.613511i −0.136473 0.990644i \(-0.543577\pi\)
−0.926159 + 0.377133i \(0.876910\pi\)
\(102\) 0 0
\(103\) 3951.90 2281.63i 0.372504 0.215065i −0.302048 0.953293i \(-0.597670\pi\)
0.674552 + 0.738227i \(0.264337\pi\)
\(104\) 0 0
\(105\) −570.556 5044.85i −0.0517511 0.457583i
\(106\) 0 0
\(107\) 8698.97 + 15067.1i 0.759802 + 1.31602i 0.942951 + 0.332930i \(0.108037\pi\)
−0.183150 + 0.983085i \(0.558629\pi\)
\(108\) 0 0
\(109\) −3865.44 + 6695.14i −0.325346 + 0.563516i −0.981582 0.191039i \(-0.938814\pi\)
0.656236 + 0.754556i \(0.272148\pi\)
\(110\) 0 0
\(111\) 22001.8i 1.78572i
\(112\) 0 0
\(113\) 3128.82 0.245032 0.122516 0.992467i \(-0.460904\pi\)
0.122516 + 0.992467i \(0.460904\pi\)
\(114\) 0 0
\(115\) −8087.29 4669.20i −0.611516 0.353059i
\(116\) 0 0
\(117\) 551.104 318.180i 0.0402589 0.0232435i
\(118\) 0 0
\(119\) 5694.59 13067.1i 0.402132 0.922750i
\(120\) 0 0
\(121\) −550.767 953.956i −0.0376181 0.0651564i
\(122\) 0 0
\(123\) −41.4890 + 71.8611i −0.00274235 + 0.00474989i
\(124\) 0 0
\(125\) 1397.54i 0.0894427i
\(126\) 0 0
\(127\) −22571.7 −1.39945 −0.699725 0.714412i \(-0.746694\pi\)
−0.699725 + 0.714412i \(0.746694\pi\)
\(128\) 0 0
\(129\) 27423.8 + 15833.2i 1.64797 + 0.951455i
\(130\) 0 0
\(131\) −15092.8 + 8713.81i −0.879480 + 0.507768i −0.870487 0.492191i \(-0.836196\pi\)
−0.00899336 + 0.999960i \(0.502863\pi\)
\(132\) 0 0
\(133\) 12258.1 + 16594.6i 0.692978 + 0.938130i
\(134\) 0 0
\(135\) −3943.26 6829.94i −0.216366 0.374756i
\(136\) 0 0
\(137\) −2604.32 + 4510.82i −0.138757 + 0.240334i −0.927026 0.374996i \(-0.877644\pi\)
0.788270 + 0.615330i \(0.210977\pi\)
\(138\) 0 0
\(139\) 21006.6i 1.08724i 0.839331 + 0.543620i \(0.182947\pi\)
−0.839331 + 0.543620i \(0.817053\pi\)
\(140\) 0 0
\(141\) −19261.8 −0.968854
\(142\) 0 0
\(143\) 14156.7 + 8173.39i 0.692295 + 0.399696i
\(144\) 0 0
\(145\) −6678.94 + 3856.09i −0.317666 + 0.183405i
\(146\) 0 0
\(147\) 21267.9 + 6540.80i 0.984216 + 0.302688i
\(148\) 0 0
\(149\) 12533.4 + 21708.4i 0.564540 + 0.977812i 0.997092 + 0.0762034i \(0.0242798\pi\)
−0.432552 + 0.901609i \(0.642387\pi\)
\(150\) 0 0
\(151\) −13334.0 + 23095.2i −0.584799 + 1.01290i 0.410102 + 0.912040i \(0.365493\pi\)
−0.994900 + 0.100862i \(0.967840\pi\)
\(152\) 0 0
\(153\) 1420.85i 0.0606967i
\(154\) 0 0
\(155\) −2002.22 −0.0833390
\(156\) 0 0
\(157\) 33916.7 + 19581.8i 1.37599 + 0.794426i 0.991674 0.128777i \(-0.0411052\pi\)
0.384312 + 0.923203i \(0.374439\pi\)
\(158\) 0 0
\(159\) 19097.3 11025.8i 0.755402 0.436131i
\(160\) 0 0
\(161\) 32919.9 24317.3i 1.27001 0.938130i
\(162\) 0 0
\(163\) 8692.95 + 15056.6i 0.327184 + 0.566700i 0.981952 0.189131i \(-0.0605669\pi\)
−0.654768 + 0.755830i \(0.727234\pi\)
\(164\) 0 0
\(165\) −6500.09 + 11258.5i −0.238754 + 0.413535i
\(166\) 0 0
\(167\) 58.5044i 0.00209776i −0.999999 0.00104888i \(-0.999666\pi\)
0.999999 0.00104888i \(-0.000333869\pi\)
\(168\) 0 0
\(169\) 11586.8 0.405685
\(170\) 0 0
\(171\) −1781.00 1028.26i −0.0609076 0.0351650i
\(172\) 0 0
\(173\) −30460.5 + 17586.4i −1.01776 + 0.587603i −0.913454 0.406942i \(-0.866595\pi\)
−0.104305 + 0.994545i \(0.533262\pi\)
\(174\) 0 0
\(175\) −5614.97 2446.99i −0.183346 0.0799017i
\(176\) 0 0
\(177\) 10639.8 + 18428.6i 0.339614 + 0.588229i
\(178\) 0 0
\(179\) −17397.5 + 30133.4i −0.542976 + 0.940462i 0.455755 + 0.890105i \(0.349369\pi\)
−0.998731 + 0.0503571i \(0.983964\pi\)
\(180\) 0 0
\(181\) 49619.6i 1.51459i −0.653071 0.757296i \(-0.726520\pi\)
0.653071 0.757296i \(-0.273480\pi\)
\(182\) 0 0
\(183\) −25392.5 −0.758234
\(184\) 0 0
\(185\) −22987.3 13271.7i −0.671651 0.387778i
\(186\) 0 0
\(187\) −31608.8 + 18249.4i −0.903910 + 0.521873i
\(188\) 0 0
\(189\) 34345.3 3884.34i 0.961487 0.108741i
\(190\) 0 0
\(191\) −17409.5 30154.1i −0.477221 0.826571i 0.522438 0.852677i \(-0.325022\pi\)
−0.999659 + 0.0261063i \(0.991689\pi\)
\(192\) 0 0
\(193\) 5153.55 8926.21i 0.138354 0.239636i −0.788520 0.615010i \(-0.789152\pi\)
0.926874 + 0.375373i \(0.122485\pi\)
\(194\) 0 0
\(195\) 13499.2i 0.355008i
\(196\) 0 0
\(197\) 19115.5 0.492554 0.246277 0.969200i \(-0.420793\pi\)
0.246277 + 0.969200i \(0.420793\pi\)
\(198\) 0 0
\(199\) −25836.3 14916.6i −0.652415 0.376672i 0.136966 0.990576i \(-0.456265\pi\)
−0.789381 + 0.613904i \(0.789598\pi\)
\(200\) 0 0
\(201\) −15180.4 + 8764.43i −0.375744 + 0.216936i
\(202\) 0 0
\(203\) −3798.46 33586.0i −0.0921756 0.815016i
\(204\) 0 0
\(205\) 50.0531 + 86.6946i 0.00119103 + 0.00206293i
\(206\) 0 0
\(207\) −2039.84 + 3533.10i −0.0476052 + 0.0824547i
\(208\) 0 0
\(209\) 52827.8i 1.20940i
\(210\) 0 0
\(211\) −77248.3 −1.73510 −0.867549 0.497352i \(-0.834306\pi\)
−0.867549 + 0.497352i \(0.834306\pi\)
\(212\) 0 0
\(213\) 65035.9 + 37548.5i 1.43349 + 0.827624i
\(214\) 0 0
\(215\) 33084.6 19101.4i 0.715730 0.413227i
\(216\) 0 0
\(217\) 3505.73 8044.41i 0.0744491 0.170834i
\(218\) 0 0
\(219\) −4449.08 7706.04i −0.0927646 0.160673i
\(220\) 0 0
\(221\) 18949.8 32822.1i 0.387991 0.672019i
\(222\) 0 0
\(223\) 45901.0i 0.923022i −0.887135 0.461511i \(-0.847308\pi\)
0.887135 0.461511i \(-0.152692\pi\)
\(224\) 0 0
\(225\) 610.545 0.0120601
\(226\) 0 0
\(227\) 75418.4 + 43542.8i 1.46361 + 0.845016i 0.999176 0.0405908i \(-0.0129240\pi\)
0.464435 + 0.885607i \(0.346257\pi\)
\(228\) 0 0
\(229\) −81318.7 + 46949.3i −1.55067 + 0.895279i −0.552582 + 0.833458i \(0.686357\pi\)
−0.998087 + 0.0618210i \(0.980309\pi\)
\(230\) 0 0
\(231\) −33852.6 45828.4i −0.634406 0.858838i
\(232\) 0 0
\(233\) −16470.7 28528.0i −0.303388 0.525484i 0.673513 0.739176i \(-0.264785\pi\)
−0.976901 + 0.213691i \(0.931451\pi\)
\(234\) 0 0
\(235\) −11618.9 + 20124.5i −0.210392 + 0.364409i
\(236\) 0 0
\(237\) 77648.9i 1.38242i
\(238\) 0 0
\(239\) 4707.47 0.0824122 0.0412061 0.999151i \(-0.486880\pi\)
0.0412061 + 0.999151i \(0.486880\pi\)
\(240\) 0 0
\(241\) 2641.95 + 1525.33i 0.0454873 + 0.0262621i 0.522571 0.852596i \(-0.324973\pi\)
−0.477084 + 0.878858i \(0.658306\pi\)
\(242\) 0 0
\(243\) −6159.06 + 3555.94i −0.104304 + 0.0602201i
\(244\) 0 0
\(245\) 19662.8 18275.0i 0.327576 0.304457i
\(246\) 0 0
\(247\) 27427.8 + 47506.3i 0.449569 + 0.778677i
\(248\) 0 0
\(249\) −33971.1 + 58839.8i −0.547913 + 0.949013i
\(250\) 0 0
\(251\) 48062.2i 0.762879i 0.924394 + 0.381440i \(0.124572\pi\)
−0.924394 + 0.381440i \(0.875428\pi\)
\(252\) 0 0
\(253\) −104798. −1.63725
\(254\) 0 0
\(255\) 26102.6 + 15070.3i 0.401424 + 0.231762i
\(256\) 0 0
\(257\) 86516.2 49950.2i 1.30988 0.756259i 0.327803 0.944746i \(-0.393692\pi\)
0.982076 + 0.188487i \(0.0603583\pi\)
\(258\) 0 0
\(259\) 93571.2 69119.2i 1.39490 1.03038i
\(260\) 0 0
\(261\) 1684.61 + 2917.83i 0.0247297 + 0.0428331i
\(262\) 0 0
\(263\) 41278.1 71495.8i 0.596772 1.03364i −0.396522 0.918025i \(-0.629783\pi\)
0.993294 0.115614i \(-0.0368836\pi\)
\(264\) 0 0
\(265\) 26603.5i 0.378833i
\(266\) 0 0
\(267\) −18085.1 −0.253688
\(268\) 0 0
\(269\) −110358. 63715.1i −1.52510 0.880517i −0.999557 0.0297491i \(-0.990529\pi\)
−0.525542 0.850768i \(-0.676137\pi\)
\(270\) 0 0
\(271\) −6655.65 + 3842.64i −0.0906258 + 0.0523228i −0.544628 0.838678i \(-0.683329\pi\)
0.454002 + 0.891001i \(0.349996\pi\)
\(272\) 0 0
\(273\) 54236.2 + 23636.0i 0.727720 + 0.317138i
\(274\) 0 0
\(275\) 7841.83 + 13582.4i 0.103694 + 0.179603i
\(276\) 0 0
\(277\) −37844.3 + 65548.3i −0.493221 + 0.854283i −0.999969 0.00781064i \(-0.997514\pi\)
0.506749 + 0.862094i \(0.330847\pi\)
\(278\) 0 0
\(279\) 874.711i 0.0112371i
\(280\) 0 0
\(281\) −6610.49 −0.0837184 −0.0418592 0.999124i \(-0.513328\pi\)
−0.0418592 + 0.999124i \(0.513328\pi\)
\(282\) 0 0
\(283\) −20905.8 12069.9i −0.261032 0.150707i 0.363773 0.931487i \(-0.381488\pi\)
−0.624805 + 0.780781i \(0.714822\pi\)
\(284\) 0 0
\(285\) −37780.5 + 21812.6i −0.465134 + 0.268546i
\(286\) 0 0
\(287\) −435.956 + 49.3052i −0.00529272 + 0.000598589i
\(288\) 0 0
\(289\) 550.299 + 953.146i 0.00658875 + 0.0114120i
\(290\) 0 0
\(291\) 21700.1 37585.7i 0.256257 0.443851i
\(292\) 0 0
\(293\) 37778.7i 0.440060i −0.975493 0.220030i \(-0.929384\pi\)
0.975493 0.220030i \(-0.0706155\pi\)
\(294\) 0 0
\(295\) 25672.0 0.294996
\(296\) 0 0
\(297\) −76647.7 44252.5i −0.868932 0.501678i
\(298\) 0 0
\(299\) 94241.7 54410.5i 1.05415 0.608612i
\(300\) 0 0
\(301\) 18816.0 + 166371.i 0.207680 + 1.83630i
\(302\) 0 0
\(303\) 57999.2 + 100458.i 0.631738 + 1.09420i
\(304\) 0 0
\(305\) −15317.0 + 26529.8i −0.164655 + 0.285190i
\(306\) 0 0
\(307\) 10595.0i 0.112415i −0.998419 0.0562075i \(-0.982099\pi\)
0.998419 0.0562075i \(-0.0179008\pi\)
\(308\) 0 0
\(309\) −42289.4 −0.442910
\(310\) 0 0
\(311\) 79569.5 + 45939.5i 0.822670 + 0.474969i 0.851336 0.524620i \(-0.175793\pi\)
−0.0286661 + 0.999589i \(0.509126\pi\)
\(312\) 0 0
\(313\) −77344.2 + 44654.7i −0.789476 + 0.455804i −0.839778 0.542930i \(-0.817315\pi\)
0.0503017 + 0.998734i \(0.483982\pi\)
\(314\) 0 0
\(315\) −1069.02 + 2453.01i −0.0107737 + 0.0247217i
\(316\) 0 0
\(317\) 4509.73 + 7811.08i 0.0448779 + 0.0777307i 0.887592 0.460631i \(-0.152377\pi\)
−0.842714 + 0.538362i \(0.819043\pi\)
\(318\) 0 0
\(319\) −43274.2 + 74953.1i −0.425253 + 0.736560i
\(320\) 0 0
\(321\) 161233.i 1.56475i
\(322\) 0 0
\(323\) −122480. −1.17398
\(324\) 0 0
\(325\) −14103.8 8142.82i −0.133527 0.0770918i
\(326\) 0 0
\(327\) 62046.4 35822.5i 0.580258 0.335012i
\(328\) 0 0
\(329\) −60511.3 81918.1i −0.559042 0.756813i
\(330\) 0 0
\(331\) 64303.7 + 111377.i 0.586922 + 1.01658i 0.994633 + 0.103467i \(0.0329937\pi\)
−0.407711 + 0.913111i \(0.633673\pi\)
\(332\) 0 0
\(333\) −5798.01 + 10042.5i −0.0522866 + 0.0905631i
\(334\) 0 0
\(335\) 21147.1i 0.188435i
\(336\) 0 0
\(337\) −53861.9 −0.474266 −0.237133 0.971477i \(-0.576208\pi\)
−0.237133 + 0.971477i \(0.576208\pi\)
\(338\) 0 0
\(339\) −25111.2 14498.0i −0.218509 0.126156i
\(340\) 0 0
\(341\) −19459.2 + 11234.8i −0.167346 + 0.0966174i
\(342\) 0 0
\(343\) 38996.4 + 110998.i 0.331464 + 0.943468i
\(344\) 0 0
\(345\) 43271.3 + 74948.0i 0.363548 + 0.629683i
\(346\) 0 0
\(347\) 9449.06 16366.2i 0.0784747 0.135922i −0.824117 0.566419i \(-0.808328\pi\)
0.902592 + 0.430497i \(0.141662\pi\)
\(348\) 0 0
\(349\) 195493.i 1.60502i 0.596639 + 0.802510i \(0.296502\pi\)
−0.596639 + 0.802510i \(0.703498\pi\)
\(350\) 0 0
\(351\) 91902.2 0.745954
\(352\) 0 0
\(353\) 123988. + 71584.3i 0.995013 + 0.574471i 0.906769 0.421628i \(-0.138541\pi\)
0.0882441 + 0.996099i \(0.471874\pi\)
\(354\) 0 0
\(355\) 78460.5 45299.2i 0.622579 0.359446i
\(356\) 0 0
\(357\) −106252. + 78486.5i −0.833685 + 0.615827i
\(358\) 0 0
\(359\) 107830. + 186767.i 0.836663 + 1.44914i 0.892670 + 0.450712i \(0.148830\pi\)
−0.0560070 + 0.998430i \(0.517837\pi\)
\(360\) 0 0
\(361\) 23477.7 40664.7i 0.180153 0.312035i
\(362\) 0 0
\(363\) 10208.3i 0.0774714i
\(364\) 0 0
\(365\) −10734.9 −0.0805773
\(366\) 0 0
\(367\) −137744. 79526.3i −1.02268 0.590444i −0.107800 0.994173i \(-0.534381\pi\)
−0.914879 + 0.403729i \(0.867714\pi\)
\(368\) 0 0
\(369\) 37.8743 21.8667i 0.000278158 0.000160595i
\(370\) 0 0
\(371\) 106886. + 46580.8i 0.776558 + 0.338422i
\(372\) 0 0
\(373\) −79562.3 137806.i −0.571860 0.990490i −0.996375 0.0850696i \(-0.972889\pi\)
0.424515 0.905421i \(-0.360445\pi\)
\(374\) 0 0
\(375\) 6475.78 11216.4i 0.0460500 0.0797609i
\(376\) 0 0
\(377\) 89870.4i 0.632316i
\(378\) 0 0
\(379\) 217562. 1.51462 0.757311 0.653055i \(-0.226513\pi\)
0.757311 + 0.653055i \(0.226513\pi\)
\(380\) 0 0
\(381\) 181156. + 104590.i 1.24797 + 0.720513i
\(382\) 0 0
\(383\) 22090.0 12753.6i 0.150590 0.0869434i −0.422811 0.906218i \(-0.638957\pi\)
0.573402 + 0.819274i \(0.305623\pi\)
\(384\) 0 0
\(385\) −68301.2 + 7724.65i −0.460794 + 0.0521143i
\(386\) 0 0
\(387\) −8344.84 14453.7i −0.0557181 0.0965066i
\(388\) 0 0
\(389\) 32008.0 55439.5i 0.211524 0.366370i −0.740668 0.671872i \(-0.765491\pi\)
0.952192 + 0.305501i \(0.0988240\pi\)
\(390\) 0 0
\(391\) 242973.i 1.58930i
\(392\) 0 0
\(393\) 161508. 1.04571
\(394\) 0 0
\(395\) −81126.8 46838.6i −0.519960 0.300199i
\(396\) 0 0
\(397\) −126504. + 73037.2i −0.802646 + 0.463408i −0.844395 0.535720i \(-0.820040\pi\)
0.0417498 + 0.999128i \(0.486707\pi\)
\(398\) 0 0
\(399\) −21486.7 189985.i −0.134966 1.19336i
\(400\) 0 0
\(401\) 81104.6 + 140477.i 0.504379 + 0.873609i 0.999987 + 0.00506331i \(0.00161171\pi\)
−0.495609 + 0.868546i \(0.665055\pi\)
\(402\) 0 0
\(403\) 11666.0 20206.1i 0.0718310 0.124415i
\(404\) 0 0
\(405\) 77510.8i 0.472555i
\(406\) 0 0
\(407\) −297878. −1.79825
\(408\) 0 0
\(409\) −130323. 75242.3i −0.779069 0.449796i 0.0570313 0.998372i \(-0.481837\pi\)
−0.836100 + 0.548577i \(0.815170\pi\)
\(410\) 0 0
\(411\) 41803.5 24135.3i 0.247474 0.142879i
\(412\) 0 0
\(413\) −44949.7 + 103144.i −0.263528 + 0.604703i
\(414\) 0 0
\(415\) 40983.4 + 70985.4i 0.237964 + 0.412166i
\(416\) 0 0
\(417\) 97338.0 168594.i 0.559771 0.969551i
\(418\) 0 0
\(419\) 179241.i 1.02096i −0.859889 0.510482i \(-0.829467\pi\)
0.859889 0.510482i \(-0.170533\pi\)
\(420\) 0 0
\(421\) −124884. −0.704600 −0.352300 0.935887i \(-0.614600\pi\)
−0.352300 + 0.935887i \(0.614600\pi\)
\(422\) 0 0
\(423\) 8791.80 + 5075.95i 0.0491357 + 0.0283685i
\(424\) 0 0
\(425\) 31490.6 18181.1i 0.174343 0.100657i
\(426\) 0 0
\(427\) −79771.1 107991.i −0.437512 0.592289i
\(428\) 0 0
\(429\) −75746.0 131196.i −0.411571 0.712862i
\(430\) 0 0
\(431\) −82455.3 + 142817.i −0.443878 + 0.768820i −0.997973 0.0636334i \(-0.979731\pi\)
0.554095 + 0.832454i \(0.313064\pi\)
\(432\) 0 0
\(433\) 137151.i 0.731513i −0.930711 0.365756i \(-0.880810\pi\)
0.930711 0.365756i \(-0.119190\pi\)
\(434\) 0 0
\(435\) 71471.7 0.377707
\(436\) 0 0
\(437\) −304561. 175838.i −1.59482 0.920768i
\(438\) 0 0
\(439\) −13345.3 + 7704.93i −0.0692469 + 0.0399797i −0.534224 0.845343i \(-0.679396\pi\)
0.464977 + 0.885323i \(0.346063\pi\)
\(440\) 0 0
\(441\) −7983.81 8590.08i −0.0410519 0.0441692i
\(442\) 0 0
\(443\) −112375. 194639.i −0.572612 0.991794i −0.996297 0.0859837i \(-0.972597\pi\)
0.423684 0.905810i \(-0.360737\pi\)
\(444\) 0 0
\(445\) −10909.1 + 18895.1i −0.0550896 + 0.0954180i
\(446\) 0 0
\(447\) 232303.i 1.16262i
\(448\) 0 0
\(449\) 94012.1 0.466328 0.233164 0.972437i \(-0.425092\pi\)
0.233164 + 0.972437i \(0.425092\pi\)
\(450\) 0 0
\(451\) 972.914 + 561.712i 0.00478323 + 0.00276160i
\(452\) 0 0
\(453\) 214032. 123571.i 1.04299 0.602173i
\(454\) 0 0
\(455\) 57410.4 42407.9i 0.277312 0.204845i
\(456\) 0 0
\(457\) −67096.9 116215.i −0.321270 0.556455i 0.659481 0.751722i \(-0.270776\pi\)
−0.980750 + 0.195266i \(0.937443\pi\)
\(458\) 0 0
\(459\) −102599. + 177706.i −0.486986 + 0.843484i
\(460\) 0 0
\(461\) 159256.i 0.749365i 0.927153 + 0.374683i \(0.122248\pi\)
−0.927153 + 0.374683i \(0.877752\pi\)
\(462\) 0 0
\(463\) −70003.7 −0.326557 −0.163279 0.986580i \(-0.552207\pi\)
−0.163279 + 0.986580i \(0.552207\pi\)
\(464\) 0 0
\(465\) 16069.4 + 9277.67i 0.0743179 + 0.0429075i
\(466\) 0 0
\(467\) 22638.0 13070.1i 0.103802 0.0599300i −0.447200 0.894434i \(-0.647579\pi\)
0.551002 + 0.834504i \(0.314246\pi\)
\(468\) 0 0
\(469\) −84963.8 37027.0i −0.386268 0.168334i
\(470\) 0 0
\(471\) −181472. 314319.i −0.818028 1.41687i
\(472\) 0 0
\(473\) 214362. 371286.i 0.958133 1.65953i
\(474\) 0 0
\(475\) 52630.3i 0.233264i
\(476\) 0 0
\(477\) −11622.3 −0.0510805
\(478\) 0 0
\(479\) 177431. + 102440.i 0.773321 + 0.446477i 0.834058 0.551677i \(-0.186012\pi\)
−0.0607373 + 0.998154i \(0.519345\pi\)
\(480\) 0 0
\(481\) 267872. 154656.i 1.15781 0.668462i
\(482\) 0 0
\(483\) −376887. + 42624.7i −1.61554 + 0.182712i
\(484\) 0 0
\(485\) −26179.4 45344.1i −0.111295 0.192769i
\(486\) 0 0
\(487\) 75432.7 130653.i 0.318055 0.550887i −0.662027 0.749480i \(-0.730304\pi\)
0.980082 + 0.198593i \(0.0636371\pi\)
\(488\) 0 0
\(489\) 161122.i 0.673809i
\(490\) 0 0
\(491\) 302409. 1.25439 0.627194 0.778863i \(-0.284203\pi\)
0.627194 + 0.778863i \(0.284203\pi\)
\(492\) 0 0
\(493\) 173777. + 100330.i 0.714989 + 0.412799i
\(494\) 0 0
\(495\) 5933.77 3425.86i 0.0242170 0.0139817i
\(496\) 0 0
\(497\) 44622.3 + 394549.i 0.180650 + 1.59731i
\(498\) 0 0
\(499\) −233347. 404168.i −0.937131 1.62316i −0.770789 0.637090i \(-0.780138\pi\)
−0.166341 0.986068i \(-0.553195\pi\)
\(500\) 0 0
\(501\) −271.091 + 469.544i −0.00108004 + 0.00187069i
\(502\) 0 0
\(503\) 476574.i 1.88362i 0.336140 + 0.941812i \(0.390878\pi\)
−0.336140 + 0.941812i \(0.609122\pi\)
\(504\) 0 0
\(505\) 139943. 0.548741
\(506\) 0 0
\(507\) −92992.9 53689.5i −0.361771 0.208869i
\(508\) 0 0
\(509\) −375715. + 216919.i −1.45018 + 0.837264i −0.998491 0.0549101i \(-0.982513\pi\)
−0.451692 + 0.892174i \(0.649179\pi\)
\(510\) 0 0
\(511\) 18796.0 43130.1i 0.0719820 0.165173i
\(512\) 0 0
\(513\) −148500. 257210.i −0.564276 0.977355i
\(514\) 0 0
\(515\) −25509.4 + 44183.5i −0.0961802 + 0.166589i
\(516\) 0 0
\(517\) 260781.i 0.975654i
\(518\) 0 0
\(519\) 325959. 1.21012
\(520\) 0 0
\(521\) 163547. + 94423.9i 0.602514 + 0.347862i 0.770030 0.638008i \(-0.220241\pi\)
−0.167516 + 0.985869i \(0.553575\pi\)
\(522\) 0 0
\(523\) −331920. + 191634.i −1.21347 + 0.700598i −0.963514 0.267659i \(-0.913750\pi\)
−0.249957 + 0.968257i \(0.580417\pi\)
\(524\) 0 0
\(525\) 33726.0 + 45657.0i 0.122362 + 0.165649i
\(526\) 0 0
\(527\) 26047.6 + 45115.7i 0.0937877 + 0.162445i
\(528\) 0 0
\(529\) −208903. + 361830.i −0.746504 + 1.29298i
\(530\) 0 0
\(531\) 11215.3i 0.0397762i
\(532\) 0 0
\(533\) −1166.54 −0.00410627
\(534\) 0 0
\(535\) −168455. 97257.4i −0.588540 0.339794i
\(536\) 0 0
\(537\) 279257. 161229.i 0.968403 0.559107i
\(538\) 0 0
\(539\) 88554.5 287942.i 0.304813 0.991123i
\(540\) 0 0
\(541\) 122882. + 212838.i 0.419850 + 0.727202i 0.995924 0.0901957i \(-0.0287492\pi\)
−0.576074 + 0.817398i \(0.695416\pi\)
\(542\) 0 0
\(543\) −229922. + 398236.i −0.779795 + 1.35064i
\(544\) 0 0
\(545\) 86433.9i 0.290999i
\(546\) 0 0
\(547\) 426220. 1.42449 0.712245 0.701931i \(-0.247678\pi\)
0.712245 + 0.701931i \(0.247678\pi\)
\(548\) 0 0
\(549\) 11590.1 + 6691.54i 0.0384541 + 0.0222015i
\(550\) 0 0
\(551\) −251523. + 145217.i −0.828466 + 0.478315i
\(552\) 0 0
\(553\) 330232. 243936.i 1.07986 0.797674i
\(554\) 0 0
\(555\) 122994. + 213032.i 0.399298 + 0.691605i
\(556\) 0 0
\(557\) 227674. 394342.i 0.733841 1.27105i −0.221389 0.975186i \(-0.571059\pi\)
0.955230 0.295865i \(-0.0956078\pi\)
\(558\) 0 0
\(559\) 445180.i 1.42466i
\(560\) 0 0
\(561\) 338248. 1.07475
\(562\) 0 0
\(563\) −4451.44 2570.04i −0.0140438 0.00810817i 0.492962 0.870051i \(-0.335914\pi\)
−0.507005 + 0.861943i \(0.669248\pi\)
\(564\) 0 0
\(565\) −30294.7 + 17490.6i −0.0949007 + 0.0547909i
\(566\) 0 0
\(567\) −311419. 135715.i −0.968676 0.422146i
\(568\) 0 0
\(569\) −229289. 397141.i −0.708206 1.22665i −0.965522 0.260321i \(-0.916172\pi\)
0.257317 0.966327i \(-0.417162\pi\)
\(570\) 0 0
\(571\) 99846.4 172939.i 0.306239 0.530421i −0.671298 0.741188i \(-0.734263\pi\)
0.977536 + 0.210767i \(0.0675961\pi\)
\(572\) 0 0
\(573\) 322681.i 0.982797i
\(574\) 0 0
\(575\) 104407. 0.315785
\(576\) 0 0
\(577\) 363358. + 209785.i 1.09140 + 0.630119i 0.933948 0.357408i \(-0.116339\pi\)
0.157450 + 0.987527i \(0.449673\pi\)
\(578\) 0 0
\(579\) −82722.6 + 47759.9i −0.246756 + 0.142464i
\(580\) 0 0
\(581\) −356960. + 40371.0i −1.05747 + 0.119596i
\(582\) 0 0
\(583\) −149277. 258555.i −0.439192 0.760703i
\(584\) 0 0
\(585\) −3557.36 + 6161.53i −0.0103948 + 0.0180043i
\(586\) 0 0
\(587\) 536841.i 1.55801i 0.627019 + 0.779004i \(0.284275\pi\)
−0.627019 + 0.779004i \(0.715725\pi\)
\(588\) 0 0
\(589\) −75401.9 −0.217346
\(590\) 0 0
\(591\) −153417. 88575.4i −0.439237 0.253593i
\(592\) 0 0
\(593\) −296791. + 171352.i −0.843998 + 0.487282i −0.858621 0.512611i \(-0.828678\pi\)
0.0146235 + 0.999893i \(0.495345\pi\)
\(594\) 0 0
\(595\) 17909.4 + 158355.i 0.0505880 + 0.447299i
\(596\) 0 0
\(597\) 138238. + 239435.i 0.387862 + 0.671797i
\(598\) 0 0
\(599\) 234677. 406472.i 0.654059 1.13286i −0.328070 0.944653i \(-0.606398\pi\)
0.982129 0.188210i \(-0.0602685\pi\)
\(600\) 0 0
\(601\) 239086.i 0.661919i 0.943645 + 0.330959i \(0.107372\pi\)
−0.943645 + 0.330959i \(0.892628\pi\)
\(602\) 0 0
\(603\) 9238.56 0.0254080
\(604\) 0 0
\(605\) 10665.5 + 6157.76i 0.0291388 + 0.0168233i
\(606\) 0 0
\(607\) 345589. 199526.i 0.937955 0.541529i 0.0486365 0.998817i \(-0.484512\pi\)
0.889319 + 0.457288i \(0.151179\pi\)
\(608\) 0 0
\(609\) −125141. + 287155.i −0.337416 + 0.774251i
\(610\) 0 0
\(611\) −135396. 234512.i −0.362679 0.628178i
\(612\) 0 0
\(613\) 222797. 385895.i 0.592909 1.02695i −0.400930 0.916109i \(-0.631313\pi\)
0.993838 0.110839i \(-0.0353538\pi\)
\(614\) 0 0
\(615\) 927.723i 0.00245283i
\(616\) 0 0
\(617\) −211730. −0.556176 −0.278088 0.960556i \(-0.589701\pi\)
−0.278088 + 0.960556i \(0.589701\pi\)
\(618\) 0 0
\(619\) −140215. 80953.0i −0.365942 0.211277i 0.305742 0.952114i \(-0.401095\pi\)
−0.671684 + 0.740838i \(0.734429\pi\)
\(620\) 0 0
\(621\) −510245. + 294590.i −1.32311 + 0.763898i
\(622\) 0 0
\(623\) −56814.8 76914.0i −0.146381 0.198166i
\(624\) 0 0
\(625\) −7812.50 13531.6i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) −244788. + 423985.i −0.622666 + 1.07849i
\(628\) 0 0
\(629\) 690625.i 1.74558i
\(630\) 0 0
\(631\) −169560. −0.425858 −0.212929 0.977068i \(-0.568300\pi\)
−0.212929 + 0.977068i \(0.568300\pi\)
\(632\) 0 0
\(633\) 619978. + 357945.i 1.54728 + 0.893323i
\(634\) 0 0
\(635\) 218550. 126180.i 0.542005 0.312927i
\(636\) 0 0
\(637\) 69863.0 + 304913.i 0.172174 + 0.751446i
\(638\) 0 0
\(639\) −19789.9 34277.1i −0.0484665 0.0839464i
\(640\) 0 0
\(641\) 138209. 239386.i 0.336373 0.582615i −0.647375 0.762172i \(-0.724133\pi\)
0.983748 + 0.179557i \(0.0574664\pi\)
\(642\) 0 0
\(643\) 585755.i 1.41675i −0.705835 0.708376i \(-0.749428\pi\)
0.705835 0.708376i \(-0.250572\pi\)
\(644\) 0 0
\(645\) −354040. −0.851007
\(646\) 0 0
\(647\) −503195. 290520.i −1.20206 0.694012i −0.241051 0.970513i \(-0.577492\pi\)
−0.961014 + 0.276500i \(0.910825\pi\)
\(648\) 0 0
\(649\) 249501. 144050.i 0.592357 0.341997i
\(650\) 0 0
\(651\) −65411.6 + 48318.2i −0.154345 + 0.114012i
\(652\) 0 0
\(653\) 227589. + 394196.i 0.533735 + 0.924456i 0.999223 + 0.0394018i \(0.0125452\pi\)
−0.465489 + 0.885054i \(0.654121\pi\)
\(654\) 0 0
\(655\) 97423.4 168742.i 0.227081 0.393316i
\(656\) 0 0
\(657\) 4689.77i 0.0108648i
\(658\) 0 0
\(659\) 516645. 1.18965 0.594827 0.803853i \(-0.297220\pi\)
0.594827 + 0.803853i \(0.297220\pi\)
\(660\) 0 0
\(661\) 26623.2 + 15370.9i 0.0609338 + 0.0351801i 0.530157 0.847899i \(-0.322133\pi\)
−0.469224 + 0.883079i \(0.655466\pi\)
\(662\) 0 0
\(663\) −304175. + 175615.i −0.691984 + 0.399517i
\(664\) 0 0
\(665\) −211455. 92151.5i −0.478161 0.208382i
\(666\) 0 0
\(667\) 288078. + 498965.i 0.647527 + 1.12155i
\(668\) 0 0
\(669\) −212691. + 368391.i −0.475222 + 0.823109i
\(670\) 0 0
\(671\) 343784.i 0.763556i
\(672\) 0 0
\(673\) 652774. 1.44123 0.720614 0.693336i \(-0.243860\pi\)
0.720614 + 0.693336i \(0.243860\pi\)
\(674\) 0 0
\(675\) 76361.0 + 44087.0i 0.167596 + 0.0967617i
\(676\) 0 0
\(677\) 367890. 212401.i 0.802676 0.463425i −0.0417297 0.999129i \(-0.513287\pi\)
0.844406 + 0.535703i \(0.179954\pi\)
\(678\) 0 0
\(679\) 228019. 25788.2i 0.494575 0.0559348i
\(680\) 0 0
\(681\) −403528. 698931.i −0.870121 1.50709i
\(682\) 0 0
\(683\) −220459. + 381847.i −0.472593 + 0.818555i −0.999508 0.0313629i \(-0.990015\pi\)
0.526915 + 0.849918i \(0.323349\pi\)
\(684\) 0 0
\(685\) 58234.5i 0.124108i
\(686\) 0 0
\(687\) 870195. 1.84375
\(688\) 0 0
\(689\) 268479. + 155006.i 0.565551 + 0.326521i
\(690\) 0 0
\(691\) 307462. 177513.i 0.643925 0.371770i −0.142200 0.989838i \(-0.545418\pi\)
0.786125 + 0.618068i \(0.212084\pi\)
\(692\) 0 0
\(693\) 3374.67 + 29838.8i 0.00702692 + 0.0621319i
\(694\) 0 0
\(695\) −117430. 203395.i −0.243114 0.421086i
\(696\) 0 0
\(697\) 1302.32 2255.68i 0.00268072 0.00464314i
\(698\) 0 0
\(699\) 305280.i 0.624804i
\(700\) 0 0
\(701\) 124187. 0.252720 0.126360 0.991984i \(-0.459671\pi\)
0.126360 + 0.991984i \(0.459671\pi\)
\(702\) 0 0
\(703\) −865681. 499801.i −1.75165 1.01131i
\(704\) 0 0
\(705\) 186501. 107677.i 0.375235 0.216642i
\(706\) 0 0
\(707\) −245029. + 562254.i −0.490206 + 1.12485i
\(708\) 0 0
\(709\) −258615. 447935.i −0.514472 0.891092i −0.999859 0.0167927i \(-0.994654\pi\)
0.485387 0.874300i \(-0.338679\pi\)
\(710\) 0 0
\(711\) −20462.4 + 35441.9i −0.0404778 + 0.0701096i
\(712\) 0 0
\(713\) 149580.i 0.294236i
\(714\) 0 0
\(715\) −182763. −0.357499
\(716\) 0 0
\(717\) −37781.1 21813.0i −0.0734914 0.0424303i
\(718\) 0 0
\(719\) −191605. + 110623.i −0.370637 + 0.213987i −0.673737 0.738971i \(-0.735312\pi\)
0.303100 + 0.952959i \(0.401978\pi\)
\(720\) 0 0
\(721\) −132853. 179852.i −0.255565 0.345975i
\(722\) 0 0
\(723\) −14135.8 24483.9i −0.0270423 0.0468387i
\(724\) 0 0
\(725\) 43112.4 74672.8i 0.0820211 0.142065i
\(726\) 0 0
\(727\) 689793.i 1.30512i −0.757738 0.652559i \(-0.773695\pi\)
0.757738 0.652559i \(-0.226305\pi\)
\(728\) 0 0
\(729\) −495646. −0.932646
\(730\) 0 0
\(731\) −860819. 496994.i −1.61093 0.930072i
\(732\) 0 0
\(733\) 601579. 347322.i 1.11966 0.646434i 0.178344 0.983968i \(-0.442926\pi\)
0.941313 + 0.337534i \(0.109593\pi\)
\(734\) 0 0
\(735\) −242490. + 55560.3i −0.448868 + 0.102847i
\(736\) 0 0
\(737\) 118660. + 205525.i 0.218459 + 0.378381i
\(738\) 0 0
\(739\) 298417. 516873.i 0.546430 0.946445i −0.452085 0.891975i \(-0.649320\pi\)
0.998515 0.0544702i \(-0.0173470\pi\)
\(740\) 0 0
\(741\) 508367.i 0.925851i
\(742\) 0 0
\(743\) 246075. 0.445749 0.222874 0.974847i \(-0.428456\pi\)
0.222874 + 0.974847i \(0.428456\pi\)
\(744\) 0 0
\(745\) −242707. 140127.i −0.437291 0.252470i
\(746\) 0 0
\(747\) 31011.4 17904.4i 0.0555751 0.0320863i
\(748\) 0 0
\(749\) 685707. 506518.i 1.22229 0.902883i
\(750\) 0 0
\(751\) −300133. 519845.i −0.532149 0.921709i −0.999296 0.0375292i \(-0.988051\pi\)
0.467147 0.884180i \(-0.345282\pi\)
\(752\) 0 0
\(753\) 222705. 385737.i 0.392772 0.680301i
\(754\) 0 0
\(755\) 298157.i 0.523060i
\(756\) 0 0
\(757\) −526244. −0.918323 −0.459161 0.888353i \(-0.651850\pi\)
−0.459161 + 0.888353i \(0.651850\pi\)
\(758\) 0 0
\(759\) 841090. + 485604.i 1.46002 + 0.842943i
\(760\) 0 0
\(761\) −49134.9 + 28368.1i −0.0848440 + 0.0489847i −0.541822 0.840493i \(-0.682265\pi\)
0.456978 + 0.889478i \(0.348932\pi\)
\(762\) 0 0
\(763\) 347269. + 151339.i 0.596509 + 0.259957i
\(764\) 0 0
\(765\) −7942.79 13757.3i −0.0135722 0.0235077i
\(766\) 0 0
\(767\) −149579. + 259078.i −0.254261 + 0.440392i
\(768\) 0 0
\(769\) 490999.i 0.830286i 0.909756 + 0.415143i \(0.136268\pi\)
−0.909756 + 0.415143i \(0.863732\pi\)
\(770\) 0 0
\(771\) −925814. −1.55745
\(772\) 0 0
\(773\) −392618. 226678.i −0.657070 0.379359i 0.134090 0.990969i \(-0.457189\pi\)
−0.791160 + 0.611610i \(0.790522\pi\)
\(774\) 0 0
\(775\) 19386.4 11192.7i 0.0322771 0.0186352i
\(776\) 0 0
\(777\) −1.07126e6 + 121156.i −1.77440 + 0.200679i
\(778\) 0 0
\(779\) 1884.96 + 3264.84i 0.00310618 + 0.00538007i
\(780\) 0 0
\(781\) 508361. 880508.i 0.833433 1.44355i
\(782\) 0 0
\(783\) 486578.i 0.793650i
\(784\) 0 0
\(785\) −437862. −0.710556
\(786\) 0 0
\(787\) −873614. 504381.i −1.41049 0.814347i −0.415056 0.909796i \(-0.636238\pi\)
−0.995434 + 0.0954489i \(0.969571\pi\)
\(788\) 0 0
\(789\) −662579. + 382540.i −1.06435 + 0.614501i
\(790\) 0 0
\(791\) −17229.3 152341.i −0.0275368 0.243480i
\(792\) 0 0
\(793\) −178490. 309154.i −0.283836 0.491618i
\(794\) 0 0
\(795\) −123273. + 213514.i −0.195044 + 0.337826i
\(796\) 0 0
\(797\) 594164.i 0.935384i −0.883892 0.467692i \(-0.845086\pi\)
0.883892 0.467692i \(-0.154914\pi\)
\(798\) 0 0
\(799\) 604617. 0.947080
\(800\) 0 0
\(801\) 8254.73 + 4765.87i 0.0128658 + 0.00742809i
\(802\) 0 0
\(803\) −104331. + 60235.3i −0.161801 + 0.0934157i
\(804\) 0 0
\(805\) −182808. + 419479.i −0.282100 + 0.647319i
\(806\) 0 0
\(807\) 590472. + 1.02273e6i 0.906676 + 1.57041i
\(808\) 0 0
\(809\) 474663. 822141.i 0.725251 1.25617i −0.233619 0.972328i \(-0.575057\pi\)
0.958870 0.283844i \(-0.0916098\pi\)
\(810\) 0 0
\(811\) 920610.i 1.39970i −0.714291 0.699849i \(-0.753251\pi\)
0.714291 0.699849i \(-0.246749\pi\)
\(812\) 0 0
\(813\) 71222.4 0.107755
\(814\) 0 0
\(815\) −168338. 97190.2i −0.253436 0.146321i
\(816\) 0 0
\(817\) 1.24594e6 719343.i 1.86661 1.07769i
\(818\) 0 0
\(819\) −18526.8 25080.9i −0.0276205 0.0373917i
\(820\) 0 0
\(821\) 267658. + 463597.i 0.397094 + 0.687787i 0.993366 0.114995i \(-0.0366853\pi\)
−0.596272 + 0.802783i \(0.703352\pi\)
\(822\) 0 0
\(823\) −224898. + 389535.i −0.332037 + 0.575105i −0.982911 0.184081i \(-0.941069\pi\)
0.650874 + 0.759186i \(0.274403\pi\)
\(824\) 0 0
\(825\) 145346.i 0.213548i
\(826\) 0 0
\(827\) 166361. 0.243243 0.121622 0.992577i \(-0.461191\pi\)
0.121622 + 0.992577i \(0.461191\pi\)
\(828\) 0 0
\(829\) 905482. + 522780.i 1.31756 + 0.760694i 0.983336 0.181799i \(-0.0581920\pi\)
0.334225 + 0.942493i \(0.391525\pi\)
\(830\) 0 0
\(831\) 607461. 350718.i 0.879663 0.507874i
\(832\) 0 0
\(833\) −667588. 205312.i −0.962096 0.295886i
\(834\) 0 0
\(835\) 327.050 + 566.467i 0.000469073 + 0.000812459i
\(836\) 0 0
\(837\) −63162.3 + 109400.i −0.0901585 + 0.156159i
\(838\) 0 0
\(839\) 933965.i 1.32680i −0.748263 0.663402i \(-0.769112\pi\)
0.748263 0.663402i \(-0.230888\pi\)
\(840\) 0 0
\(841\) −231460. −0.327253
\(842\) 0 0
\(843\) 53054.4 + 30631.0i 0.0746563 + 0.0431028i
\(844\) 0 0
\(845\) −112188. + 64772.0i −0.157121 + 0.0907139i
\(846\) 0 0
\(847\) −43414.8 + 32069.7i −0.0605162 + 0.0447021i
\(848\) 0 0
\(849\) 111857. + 193742.i 0.155184 + 0.268787i
\(850\) 0 0
\(851\) −991492. + 1.71731e6i −1.36908 + 2.37132i
\(852\) 0 0
\(853\) 471325.i 0.647773i 0.946096 + 0.323886i \(0.104990\pi\)
−0.946096 + 0.323886i \(0.895010\pi\)
\(854\) 0 0
\(855\) 22992.6 0.0314526
\(856\) 0 0
\(857\) 894015. + 516160.i 1.21726 + 0.702785i 0.964331 0.264700i \(-0.0852728\pi\)
0.252929 + 0.967485i \(0.418606\pi\)
\(858\) 0 0
\(859\) −166917. + 96369.5i −0.226211 + 0.130603i −0.608823 0.793306i \(-0.708358\pi\)
0.382612 + 0.923909i \(0.375025\pi\)
\(860\) 0 0
\(861\) 3727.35 + 1624.37i 0.00502799 + 0.00219119i
\(862\) 0 0
\(863\) 262740. + 455079.i 0.352781 + 0.611034i 0.986736 0.162336i \(-0.0519028\pi\)
−0.633955 + 0.773370i \(0.718569\pi\)
\(864\) 0 0
\(865\) 196622. 340559.i 0.262784 0.455156i
\(866\) 0 0
\(867\) 10199.7i 0.0135690i
\(868\) 0 0
\(869\) −1.05127e6 −1.39212
\(870\) 0 0
\(871\) −213414. 123214.i −0.281311 0.162415i
\(872\) 0 0
\(873\) −19809.5 + 11437.0i −0.0259923 + 0.0150067i
\(874\) 0 0
\(875\) 68045.8 7695.76i 0.0888761 0.0100516i
\(876\) 0 0
\(877\) 459691. + 796209.i 0.597678 + 1.03521i 0.993163 + 0.116736i \(0.0372432\pi\)
−0.395485 + 0.918472i \(0.629423\pi\)
\(878\) 0 0
\(879\) −175055. + 303204.i −0.226567 + 0.392425i
\(880\) 0 0
\(881\) 307096.i 0.395660i −0.980236 0.197830i \(-0.936611\pi\)
0.980236 0.197830i \(-0.0633894\pi\)
\(882\) 0 0
\(883\) 747006. 0.958082 0.479041 0.877792i \(-0.340984\pi\)
0.479041 + 0.877792i \(0.340984\pi\)
\(884\) 0 0
\(885\) −206038. 118956.i −0.263064 0.151880i
\(886\) 0 0
\(887\) 352945. 203773.i 0.448600 0.259000i −0.258639 0.965974i \(-0.583274\pi\)
0.707239 + 0.706975i \(0.249941\pi\)
\(888\) 0 0
\(889\) 124294. + 1.09901e6i 0.157271 + 1.39059i
\(890\) 0 0
\(891\) 434925. + 753312.i 0.547847 + 0.948898i
\(892\) 0 0
\(893\) −437557. + 757872.i −0.548696 + 0.950370i
\(894\) 0 0
\(895\) 389020.i 0.485653i
\(896\) 0 0
\(897\) −1.00849e6 −1.25339
\(898\) 0 0
\(899\) 106982. + 61765.9i 0.132370 + 0.0764239i
\(900\) 0 0
\(901\) −599454. + 346095.i −0.738425 + 0.426330i
\(902\) 0 0
\(903\) 619897. 1.42244e6i 0.760228 1.74445i
\(904\) 0 0
\(905\) 277382. + 480439.i 0.338673 + 0.586599i
\(906\) 0 0
\(907\) 198239. 343360.i 0.240976 0.417383i −0.720016 0.693957i \(-0.755866\pi\)
0.960993 + 0.276574i \(0.0891991\pi\)
\(908\) 0 0
\(909\) 61136.8i 0.0739903i
\(910\) 0 0
\(911\) 682934. 0.822890 0.411445 0.911434i \(-0.365024\pi\)
0.411445 + 0.911434i \(0.365024\pi\)
\(912\) 0 0
\(913\) 796620. + 459929.i 0.955673 + 0.551758i
\(914\) 0 0
\(915\) 245862. 141948.i 0.293663 0.169546i
\(916\) 0 0
\(917\) 507382. + 686877.i 0.603388 + 0.816846i
\(918\) 0 0
\(919\) 175122. + 303321.i 0.207353 + 0.359146i 0.950880 0.309560i \(-0.100182\pi\)
−0.743527 + 0.668706i \(0.766848\pi\)
\(920\) 0 0
\(921\) −49094.0 + 85033.2i −0.0578774 + 0.100247i
\(922\) 0 0
\(923\) 1.05575e6i 1.23924i
\(924\) 0 0
\(925\) 296764. 0.346839
\(926\) 0 0
\(927\) 19302.5 + 11144.3i 0.0224623 + 0.0129686i
\(928\) 0 0
\(929\) −1.34168e6 + 774617.i −1.55459 + 0.897544i −0.556833 + 0.830624i \(0.687984\pi\)
−0.997758 + 0.0669199i \(0.978683\pi\)
\(930\) 0 0
\(931\) 740483. 688222.i 0.854310 0.794016i
\(932\) 0 0
\(933\) −425739. 737401.i −0.489080 0.847111i
\(934\) 0 0
\(935\) 204034. 353398.i 0.233389 0.404241i
\(936\) 0 0
\(937\) 431939.i 0.491975i 0.969273 + 0.245988i \(0.0791122\pi\)
−0.969273 + 0.245988i \(0.920888\pi\)
\(938\) 0 0
\(939\) 827664. 0.938692
\(940\) 0 0
\(941\) −560859. 323812.i −0.633395 0.365691i 0.148671 0.988887i \(-0.452501\pi\)
−0.782066 + 0.623196i \(0.785834\pi\)
\(942\) 0 0
\(943\) 6476.71 3739.33i 0.00728335 0.00420504i
\(944\) 0 0
\(945\) −310833. + 229606.i −0.348067 + 0.257110i
\(946\) 0 0
\(947\) 875350. + 1.51615e6i 0.976071 + 1.69061i 0.676353 + 0.736577i \(0.263559\pi\)
0.299718 + 0.954028i \(0.403107\pi\)
\(948\) 0 0
\(949\) 62547.3 108335.i 0.0694506 0.120292i
\(950\) 0 0
\(951\) 83586.8i 0.0924223i
\(952\) 0 0
\(953\) −1.11747e6 −1.23041 −0.615206 0.788367i \(-0.710927\pi\)
−0.615206 + 0.788367i \(0.710927\pi\)
\(954\) 0 0
\(955\) 337133. + 194644.i 0.369654 + 0.213420i
\(956\) 0 0
\(957\) 694619. 401039.i 0.758443 0.437887i
\(958\) 0 0
\(959\) 233971. + 101964.i 0.254405 + 0.110869i
\(960\) 0 0
\(961\) −445725. 772018.i −0.482637 0.835951i
\(962\) 0 0
\(963\) −42488.9 + 73592.9i −0.0458166 + 0.0793567i
\(964\) 0 0
\(965\) 115237.i 0.123748i
\(966\) 0 0
\(967\) −1.24016e6 −1.32625 −0.663126 0.748508i \(-0.730771\pi\)
−0.663126 + 0.748508i \(0.730771\pi\)
\(968\) 0 0
\(969\) 983001. + 567536.i 1.04690 + 0.604430i
\(970\) 0 0
\(971\) −429350. + 247885.i −0.455379 + 0.262913i −0.710099 0.704101i \(-0.751350\pi\)
0.254720 + 0.967015i \(0.418017\pi\)
\(972\) 0 0
\(973\) 1.02280e6 115676.i 1.08035 0.122184i
\(974\) 0 0
\(975\) 75462.7 + 130705.i 0.0793822 + 0.137494i
\(976\) 0 0
\(977\) −314713. + 545099.i −0.329705 + 0.571066i −0.982453 0.186509i \(-0.940283\pi\)
0.652748 + 0.757575i \(0.273616\pi\)
\(978\) 0 0
\(979\) 244851.i 0.255468i
\(980\) 0 0
\(981\) −37760.4 −0.0392373
\(982\) 0 0
\(983\) 204127. + 117853.i 0.211248 + 0.121964i 0.601891 0.798578i \(-0.294414\pi\)
−0.390643 + 0.920542i \(0.627747\pi\)
\(984\) 0 0
\(985\) −185085. + 106859.i −0.190765 + 0.110138i
\(986\) 0 0
\(987\) 106068. + 937848.i 0.108880 + 0.962716i
\(988\) 0 0
\(989\) −1.42701e6 2.47166e6i −1.45893 2.52695i
\(990\) 0 0
\(991\) −651369. + 1.12820e6i −0.663254 + 1.14879i 0.316502 + 0.948592i \(0.397492\pi\)
−0.979756 + 0.200198i \(0.935842\pi\)
\(992\) 0 0
\(993\) 1.19185e6i 1.20872i
\(994\) 0 0
\(995\) 333545. 0.336906
\(996\) 0 0
\(997\) −1.52751e6 881908.i −1.53672 0.887224i −0.999028 0.0440803i \(-0.985964\pi\)
−0.537689 0.843143i \(-0.680702\pi\)
\(998\) 0 0
\(999\) −1.45032e6 + 837341.i −1.45322 + 0.839018i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 140.5.r.a.101.4 yes 20
5.2 odd 4 700.5.o.b.549.6 40
5.3 odd 4 700.5.o.b.549.15 40
5.4 even 2 700.5.s.b.101.7 20
7.3 odd 6 980.5.d.a.881.6 20
7.4 even 3 980.5.d.a.881.15 20
7.5 odd 6 inner 140.5.r.a.61.4 20
35.12 even 12 700.5.o.b.649.15 40
35.19 odd 6 700.5.s.b.201.7 20
35.33 even 12 700.5.o.b.649.6 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.5.r.a.61.4 20 7.5 odd 6 inner
140.5.r.a.101.4 yes 20 1.1 even 1 trivial
700.5.o.b.549.6 40 5.2 odd 4
700.5.o.b.549.15 40 5.3 odd 4
700.5.o.b.649.6 40 35.33 even 12
700.5.o.b.649.15 40 35.12 even 12
700.5.s.b.101.7 20 5.4 even 2
700.5.s.b.201.7 20 35.19 odd 6
980.5.d.a.881.6 20 7.3 odd 6
980.5.d.a.881.15 20 7.4 even 3