Properties

Label 700.5.s.b.101.7
Level $700$
Weight $5$
Character 700.101
Analytic conductor $72.359$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,5,Mod(101,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.101");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 700.s (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(72.3589741587\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 10 x^{19} + 1081 x^{18} - 9444 x^{17} + 488519 x^{16} - 3695380 x^{15} + 120074862 x^{14} + \cdots + 26\!\cdots\!01 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2}\cdot 5^{4}\cdot 7^{5} \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.7
Root \(0.500000 - 8.40136i\) of defining polynomial
Character \(\chi\) \(=\) 700.101
Dual form 700.5.s.b.201.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(8.02579 + 4.63369i) q^{3} +(5.50663 + 48.6896i) q^{7} +(2.44218 + 4.22998i) q^{9} +(-62.7346 + 108.660i) q^{11} +130.285i q^{13} +(-251.925 - 145.449i) q^{17} +(-364.633 + 210.521i) q^{19} +(-181.417 + 416.288i) q^{21} +(-417.626 - 723.350i) q^{23} -705.393i q^{27} +689.798 q^{29} +(155.091 + 89.5420i) q^{31} +(-1006.99 + 581.386i) q^{33} +(-1187.06 - 2056.04i) q^{37} +(-603.701 + 1045.64i) q^{39} -8.95378i q^{41} +3416.97 q^{43} +(-1799.99 + 1039.22i) q^{47} +(-2340.35 + 536.232i) q^{49} +(-1347.93 - 2334.68i) q^{51} +(1189.75 - 2060.70i) q^{53} -3901.96 q^{57} +(-1988.55 - 1148.09i) q^{59} +(2372.90 - 1369.99i) q^{61} +(-192.508 + 142.202i) q^{63} +(-945.729 + 1638.05i) q^{67} -7740.60i q^{69} -8103.36 q^{71} +(-831.523 - 480.080i) q^{73} +(-5636.05 - 2456.18i) q^{77} +(4189.37 + 7256.20i) q^{79} +(3466.39 - 6003.96i) q^{81} +7331.34i q^{83} +(5536.17 + 3196.31i) q^{87} +(1690.03 - 975.741i) q^{89} +(-6343.53 + 717.433i) q^{91} +(829.820 + 1437.29i) q^{93} -4683.12i q^{97} -612.837 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 18 q^{3} + 22 q^{7} + 234 q^{9} - 150 q^{11} - 864 q^{17} + 978 q^{19} - 2576 q^{21} + 666 q^{23} - 312 q^{29} + 5196 q^{31} + 384 q^{33} + 2900 q^{37} - 6720 q^{39} - 8756 q^{43} - 13644 q^{47}+ \cdots + 3060 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 8.02579 + 4.63369i 0.891754 + 0.514855i 0.874516 0.484997i \(-0.161179\pi\)
0.0172383 + 0.999851i \(0.494513\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 5.50663 + 48.6896i 0.112380 + 0.993665i
\(8\) 0 0
\(9\) 2.44218 + 4.22998i 0.0301504 + 0.0522220i
\(10\) 0 0
\(11\) −62.7346 + 108.660i −0.518468 + 0.898013i 0.481302 + 0.876555i \(0.340164\pi\)
−0.999770 + 0.0214579i \(0.993169\pi\)
\(12\) 0 0
\(13\) 130.285i 0.770918i 0.922725 + 0.385459i \(0.125957\pi\)
−0.922725 + 0.385459i \(0.874043\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −251.925 145.449i −0.871713 0.503284i −0.00379573 0.999993i \(-0.501208\pi\)
−0.867917 + 0.496709i \(0.834542\pi\)
\(18\) 0 0
\(19\) −364.633 + 210.521i −1.01006 + 0.583161i −0.911210 0.411941i \(-0.864851\pi\)
−0.0988538 + 0.995102i \(0.531518\pi\)
\(20\) 0 0
\(21\) −181.417 + 416.288i −0.411377 + 0.943965i
\(22\) 0 0
\(23\) −417.626 723.350i −0.789463 1.36739i −0.926296 0.376796i \(-0.877026\pi\)
0.136833 0.990594i \(-0.456308\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 705.393i 0.967617i
\(28\) 0 0
\(29\) 689.798 0.820211 0.410106 0.912038i \(-0.365492\pi\)
0.410106 + 0.912038i \(0.365492\pi\)
\(30\) 0 0
\(31\) 155.091 + 89.5420i 0.161385 + 0.0931758i 0.578517 0.815670i \(-0.303631\pi\)
−0.417132 + 0.908846i \(0.636965\pi\)
\(32\) 0 0
\(33\) −1006.99 + 581.386i −0.924692 + 0.533871i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1187.06 2056.04i −0.867098 1.50186i −0.864949 0.501860i \(-0.832649\pi\)
−0.00214865 0.999998i \(-0.500684\pi\)
\(38\) 0 0
\(39\) −603.701 + 1045.64i −0.396911 + 0.687470i
\(40\) 0 0
\(41\) 8.95378i 0.00532646i −0.999996 0.00266323i \(-0.999152\pi\)
0.999996 0.00266323i \(-0.000847733\pi\)
\(42\) 0 0
\(43\) 3416.97 1.84801 0.924004 0.382384i \(-0.124897\pi\)
0.924004 + 0.382384i \(0.124897\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1799.99 + 1039.22i −0.814844 + 0.470450i −0.848635 0.528979i \(-0.822575\pi\)
0.0337914 + 0.999429i \(0.489242\pi\)
\(48\) 0 0
\(49\) −2340.35 + 536.232i −0.974741 + 0.223337i
\(50\) 0 0
\(51\) −1347.93 2334.68i −0.518236 0.897611i
\(52\) 0 0
\(53\) 1189.75 2060.70i 0.423548 0.733607i −0.572735 0.819740i \(-0.694118\pi\)
0.996284 + 0.0861333i \(0.0274511\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −3901.96 −1.20097
\(58\) 0 0
\(59\) −1988.55 1148.09i −0.571257 0.329815i 0.186394 0.982475i \(-0.440320\pi\)
−0.757651 + 0.652660i \(0.773653\pi\)
\(60\) 0 0
\(61\) 2372.90 1369.99i 0.637705 0.368179i −0.146025 0.989281i \(-0.546648\pi\)
0.783730 + 0.621102i \(0.213315\pi\)
\(62\) 0 0
\(63\) −192.508 + 142.202i −0.0485029 + 0.0358281i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −945.729 + 1638.05i −0.210677 + 0.364903i −0.951927 0.306326i \(-0.900900\pi\)
0.741250 + 0.671229i \(0.234233\pi\)
\(68\) 0 0
\(69\) 7740.60i 1.62583i
\(70\) 0 0
\(71\) −8103.36 −1.60749 −0.803746 0.594973i \(-0.797163\pi\)
−0.803746 + 0.594973i \(0.797163\pi\)
\(72\) 0 0
\(73\) −831.523 480.080i −0.156037 0.0900882i 0.419948 0.907548i \(-0.362048\pi\)
−0.575986 + 0.817460i \(0.695382\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5636.05 2456.18i −0.950590 0.414265i
\(78\) 0 0
\(79\) 4189.37 + 7256.20i 0.671266 + 1.16267i 0.977545 + 0.210725i \(0.0675823\pi\)
−0.306280 + 0.951941i \(0.599084\pi\)
\(80\) 0 0
\(81\) 3466.39 6003.96i 0.528332 0.915098i
\(82\) 0 0
\(83\) 7331.34i 1.06421i 0.846679 + 0.532105i \(0.178599\pi\)
−0.846679 + 0.532105i \(0.821401\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 5536.17 + 3196.31i 0.731427 + 0.422290i
\(88\) 0 0
\(89\) 1690.03 975.741i 0.213361 0.123184i −0.389511 0.921022i \(-0.627356\pi\)
0.602872 + 0.797838i \(0.294023\pi\)
\(90\) 0 0
\(91\) −6343.53 + 717.433i −0.766035 + 0.0866360i
\(92\) 0 0
\(93\) 829.820 + 1437.29i 0.0959440 + 0.166180i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4683.12i 0.497728i −0.968538 0.248864i \(-0.919943\pi\)
0.968538 0.248864i \(-0.0800572\pi\)
\(98\) 0 0
\(99\) −612.837 −0.0625280
\(100\) 0 0
\(101\) −10839.9 6258.42i −1.06263 0.613511i −0.136473 0.990644i \(-0.543577\pi\)
−0.926159 + 0.377133i \(0.876910\pi\)
\(102\) 0 0
\(103\) −3951.90 + 2281.63i −0.372504 + 0.215065i −0.674552 0.738227i \(-0.735663\pi\)
0.302048 + 0.953293i \(0.402330\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8698.97 15067.1i −0.759802 1.31602i −0.942951 0.332930i \(-0.891963\pi\)
0.183150 0.983085i \(-0.441371\pi\)
\(108\) 0 0
\(109\) −3865.44 + 6695.14i −0.325346 + 0.563516i −0.981582 0.191039i \(-0.938814\pi\)
0.656236 + 0.754556i \(0.272148\pi\)
\(110\) 0 0
\(111\) 22001.8i 1.78572i
\(112\) 0 0
\(113\) −3128.82 −0.245032 −0.122516 0.992467i \(-0.539096\pi\)
−0.122516 + 0.992467i \(0.539096\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −551.104 + 318.180i −0.0402589 + 0.0232435i
\(118\) 0 0
\(119\) 5694.59 13067.1i 0.402132 0.922750i
\(120\) 0 0
\(121\) −550.767 953.956i −0.0376181 0.0651564i
\(122\) 0 0
\(123\) 41.4890 71.8611i 0.00274235 0.00474989i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 22571.7 1.39945 0.699725 0.714412i \(-0.253306\pi\)
0.699725 + 0.714412i \(0.253306\pi\)
\(128\) 0 0
\(129\) 27423.8 + 15833.2i 1.64797 + 0.951455i
\(130\) 0 0
\(131\) −15092.8 + 8713.81i −0.879480 + 0.507768i −0.870487 0.492191i \(-0.836196\pi\)
−0.00899336 + 0.999960i \(0.502863\pi\)
\(132\) 0 0
\(133\) −12258.1 16594.6i −0.692978 0.938130i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2604.32 4510.82i 0.138757 0.240334i −0.788270 0.615330i \(-0.789023\pi\)
0.927026 + 0.374996i \(0.122356\pi\)
\(138\) 0 0
\(139\) 21006.6i 1.08724i 0.839331 + 0.543620i \(0.182947\pi\)
−0.839331 + 0.543620i \(0.817053\pi\)
\(140\) 0 0
\(141\) −19261.8 −0.968854
\(142\) 0 0
\(143\) −14156.7 8173.39i −0.692295 0.399696i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −21267.9 6540.80i −0.984216 0.302688i
\(148\) 0 0
\(149\) 12533.4 + 21708.4i 0.564540 + 0.977812i 0.997092 + 0.0762034i \(0.0242798\pi\)
−0.432552 + 0.901609i \(0.642387\pi\)
\(150\) 0 0
\(151\) −13334.0 + 23095.2i −0.584799 + 1.01290i 0.410102 + 0.912040i \(0.365493\pi\)
−0.994900 + 0.100862i \(0.967840\pi\)
\(152\) 0 0
\(153\) 1420.85i 0.0606967i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −33916.7 19581.8i −1.37599 0.794426i −0.384312 0.923203i \(-0.625561\pi\)
−0.991674 + 0.128777i \(0.958895\pi\)
\(158\) 0 0
\(159\) 19097.3 11025.8i 0.755402 0.436131i
\(160\) 0 0
\(161\) 32919.9 24317.3i 1.27001 0.938130i
\(162\) 0 0
\(163\) −8692.95 15056.6i −0.327184 0.566700i 0.654768 0.755830i \(-0.272766\pi\)
−0.981952 + 0.189131i \(0.939433\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 58.5044i 0.00209776i 0.999999 + 0.00104888i \(0.000333869\pi\)
−0.999999 + 0.00104888i \(0.999666\pi\)
\(168\) 0 0
\(169\) 11586.8 0.405685
\(170\) 0 0
\(171\) −1781.00 1028.26i −0.0609076 0.0351650i
\(172\) 0 0
\(173\) 30460.5 17586.4i 1.01776 0.587603i 0.104305 0.994545i \(-0.466738\pi\)
0.913454 + 0.406942i \(0.133405\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −10639.8 18428.6i −0.339614 0.588229i
\(178\) 0 0
\(179\) −17397.5 + 30133.4i −0.542976 + 0.940462i 0.455755 + 0.890105i \(0.349369\pi\)
−0.998731 + 0.0503571i \(0.983964\pi\)
\(180\) 0 0
\(181\) 49619.6i 1.51459i −0.653071 0.757296i \(-0.726520\pi\)
0.653071 0.757296i \(-0.273480\pi\)
\(182\) 0 0
\(183\) 25392.5 0.758234
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 31608.8 18249.4i 0.903910 0.521873i
\(188\) 0 0
\(189\) 34345.3 3884.34i 0.961487 0.108741i
\(190\) 0 0
\(191\) −17409.5 30154.1i −0.477221 0.826571i 0.522438 0.852677i \(-0.325022\pi\)
−0.999659 + 0.0261063i \(0.991689\pi\)
\(192\) 0 0
\(193\) −5153.55 + 8926.21i −0.138354 + 0.239636i −0.926874 0.375373i \(-0.877515\pi\)
0.788520 + 0.615010i \(0.210848\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −19115.5 −0.492554 −0.246277 0.969200i \(-0.579207\pi\)
−0.246277 + 0.969200i \(0.579207\pi\)
\(198\) 0 0
\(199\) −25836.3 14916.6i −0.652415 0.376672i 0.136966 0.990576i \(-0.456265\pi\)
−0.789381 + 0.613904i \(0.789598\pi\)
\(200\) 0 0
\(201\) −15180.4 + 8764.43i −0.375744 + 0.216936i
\(202\) 0 0
\(203\) 3798.46 + 33586.0i 0.0921756 + 0.815016i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 2039.84 3533.10i 0.0476052 0.0824547i
\(208\) 0 0
\(209\) 52827.8i 1.20940i
\(210\) 0 0
\(211\) −77248.3 −1.73510 −0.867549 0.497352i \(-0.834306\pi\)
−0.867549 + 0.497352i \(0.834306\pi\)
\(212\) 0 0
\(213\) −65035.9 37548.5i −1.43349 0.827624i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −3505.73 + 8044.41i −0.0744491 + 0.170834i
\(218\) 0 0
\(219\) −4449.08 7706.04i −0.0927646 0.160673i
\(220\) 0 0
\(221\) 18949.8 32822.1i 0.387991 0.672019i
\(222\) 0 0
\(223\) 45901.0i 0.923022i 0.887135 + 0.461511i \(0.152692\pi\)
−0.887135 + 0.461511i \(0.847308\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −75418.4 43542.8i −1.46361 0.845016i −0.464435 0.885607i \(-0.653743\pi\)
−0.999176 + 0.0405908i \(0.987076\pi\)
\(228\) 0 0
\(229\) −81318.7 + 46949.3i −1.55067 + 0.895279i −0.552582 + 0.833458i \(0.686357\pi\)
−0.998087 + 0.0618210i \(0.980309\pi\)
\(230\) 0 0
\(231\) −33852.6 45828.4i −0.634406 0.858838i
\(232\) 0 0
\(233\) 16470.7 + 28528.0i 0.303388 + 0.525484i 0.976901 0.213691i \(-0.0685487\pi\)
−0.673513 + 0.739176i \(0.735215\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 77648.9i 1.38242i
\(238\) 0 0
\(239\) 4707.47 0.0824122 0.0412061 0.999151i \(-0.486880\pi\)
0.0412061 + 0.999151i \(0.486880\pi\)
\(240\) 0 0
\(241\) 2641.95 + 1525.33i 0.0454873 + 0.0262621i 0.522571 0.852596i \(-0.324973\pi\)
−0.477084 + 0.878858i \(0.658306\pi\)
\(242\) 0 0
\(243\) 6159.06 3555.94i 0.104304 0.0602201i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −27427.8 47506.3i −0.449569 0.778677i
\(248\) 0 0
\(249\) −33971.1 + 58839.8i −0.547913 + 0.949013i
\(250\) 0 0
\(251\) 48062.2i 0.762879i 0.924394 + 0.381440i \(0.124572\pi\)
−0.924394 + 0.381440i \(0.875428\pi\)
\(252\) 0 0
\(253\) 104798. 1.63725
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −86516.2 + 49950.2i −1.30988 + 0.756259i −0.982076 0.188487i \(-0.939642\pi\)
−0.327803 + 0.944746i \(0.606308\pi\)
\(258\) 0 0
\(259\) 93571.2 69119.2i 1.39490 1.03038i
\(260\) 0 0
\(261\) 1684.61 + 2917.83i 0.0247297 + 0.0428331i
\(262\) 0 0
\(263\) −41278.1 + 71495.8i −0.596772 + 1.03364i 0.396522 + 0.918025i \(0.370217\pi\)
−0.993294 + 0.115614i \(0.963116\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 18085.1 0.253688
\(268\) 0 0
\(269\) −110358. 63715.1i −1.52510 0.880517i −0.999557 0.0297491i \(-0.990529\pi\)
−0.525542 0.850768i \(-0.676137\pi\)
\(270\) 0 0
\(271\) −6655.65 + 3842.64i −0.0906258 + 0.0523228i −0.544628 0.838678i \(-0.683329\pi\)
0.454002 + 0.891001i \(0.349996\pi\)
\(272\) 0 0
\(273\) −54236.2 23636.0i −0.727720 0.317138i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 37844.3 65548.3i 0.493221 0.854283i −0.506749 0.862094i \(-0.669153\pi\)
0.999969 + 0.00781064i \(0.00248623\pi\)
\(278\) 0 0
\(279\) 874.711i 0.0112371i
\(280\) 0 0
\(281\) −6610.49 −0.0837184 −0.0418592 0.999124i \(-0.513328\pi\)
−0.0418592 + 0.999124i \(0.513328\pi\)
\(282\) 0 0
\(283\) 20905.8 + 12069.9i 0.261032 + 0.150707i 0.624805 0.780781i \(-0.285178\pi\)
−0.363773 + 0.931487i \(0.618512\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 435.956 49.3052i 0.00529272 0.000598589i
\(288\) 0 0
\(289\) 550.299 + 953.146i 0.00658875 + 0.0114120i
\(290\) 0 0
\(291\) 21700.1 37585.7i 0.256257 0.443851i
\(292\) 0 0
\(293\) 37778.7i 0.440060i 0.975493 + 0.220030i \(0.0706155\pi\)
−0.975493 + 0.220030i \(0.929384\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 76647.7 + 44252.5i 0.868932 + 0.501678i
\(298\) 0 0
\(299\) 94241.7 54410.5i 1.05415 0.608612i
\(300\) 0 0
\(301\) 18816.0 + 166371.i 0.207680 + 1.83630i
\(302\) 0 0
\(303\) −57999.2 100458.i −0.631738 1.09420i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 10595.0i 0.112415i 0.998419 + 0.0562075i \(0.0179008\pi\)
−0.998419 + 0.0562075i \(0.982099\pi\)
\(308\) 0 0
\(309\) −42289.4 −0.442910
\(310\) 0 0
\(311\) 79569.5 + 45939.5i 0.822670 + 0.474969i 0.851336 0.524620i \(-0.175793\pi\)
−0.0286661 + 0.999589i \(0.509126\pi\)
\(312\) 0 0
\(313\) 77344.2 44654.7i 0.789476 0.455804i −0.0503017 0.998734i \(-0.516018\pi\)
0.839778 + 0.542930i \(0.182685\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4509.73 7811.08i −0.0448779 0.0777307i 0.842714 0.538362i \(-0.180957\pi\)
−0.887592 + 0.460631i \(0.847623\pi\)
\(318\) 0 0
\(319\) −43274.2 + 74953.1i −0.425253 + 0.736560i
\(320\) 0 0
\(321\) 161233.i 1.56475i
\(322\) 0 0
\(323\) 122480. 1.17398
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −62046.4 + 35822.5i −0.580258 + 0.335012i
\(328\) 0 0
\(329\) −60511.3 81918.1i −0.559042 0.756813i
\(330\) 0 0
\(331\) 64303.7 + 111377.i 0.586922 + 1.01658i 0.994633 + 0.103467i \(0.0329937\pi\)
−0.407711 + 0.913111i \(0.633673\pi\)
\(332\) 0 0
\(333\) 5798.01 10042.5i 0.0522866 0.0905631i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 53861.9 0.474266 0.237133 0.971477i \(-0.423792\pi\)
0.237133 + 0.971477i \(0.423792\pi\)
\(338\) 0 0
\(339\) −25111.2 14498.0i −0.218509 0.126156i
\(340\) 0 0
\(341\) −19459.2 + 11234.8i −0.167346 + 0.0966174i
\(342\) 0 0
\(343\) −38996.4 110998.i −0.331464 0.943468i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −9449.06 + 16366.2i −0.0784747 + 0.135922i −0.902592 0.430497i \(-0.858338\pi\)
0.824117 + 0.566419i \(0.191672\pi\)
\(348\) 0 0
\(349\) 195493.i 1.60502i 0.596639 + 0.802510i \(0.296502\pi\)
−0.596639 + 0.802510i \(0.703498\pi\)
\(350\) 0 0
\(351\) 91902.2 0.745954
\(352\) 0 0
\(353\) −123988. 71584.3i −0.995013 0.574471i −0.0882441 0.996099i \(-0.528126\pi\)
−0.906769 + 0.421628i \(0.861459\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 106252. 78486.5i 0.833685 0.615827i
\(358\) 0 0
\(359\) 107830. + 186767.i 0.836663 + 1.44914i 0.892670 + 0.450712i \(0.148830\pi\)
−0.0560070 + 0.998430i \(0.517837\pi\)
\(360\) 0 0
\(361\) 23477.7 40664.7i 0.180153 0.312035i
\(362\) 0 0
\(363\) 10208.3i 0.0774714i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 137744. + 79526.3i 1.02268 + 0.590444i 0.914879 0.403729i \(-0.132286\pi\)
0.107800 + 0.994173i \(0.465619\pi\)
\(368\) 0 0
\(369\) 37.8743 21.8667i 0.000278158 0.000160595i
\(370\) 0 0
\(371\) 106886. + 46580.8i 0.776558 + 0.338422i
\(372\) 0 0
\(373\) 79562.3 + 137806.i 0.571860 + 0.990490i 0.996375 + 0.0850696i \(0.0271113\pi\)
−0.424515 + 0.905421i \(0.639555\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 89870.4i 0.632316i
\(378\) 0 0
\(379\) 217562. 1.51462 0.757311 0.653055i \(-0.226513\pi\)
0.757311 + 0.653055i \(0.226513\pi\)
\(380\) 0 0
\(381\) 181156. + 104590.i 1.24797 + 0.720513i
\(382\) 0 0
\(383\) −22090.0 + 12753.6i −0.150590 + 0.0869434i −0.573402 0.819274i \(-0.694377\pi\)
0.422811 + 0.906218i \(0.361043\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8344.84 + 14453.7i 0.0557181 + 0.0965066i
\(388\) 0 0
\(389\) 32008.0 55439.5i 0.211524 0.366370i −0.740668 0.671872i \(-0.765491\pi\)
0.952192 + 0.305501i \(0.0988240\pi\)
\(390\) 0 0
\(391\) 242973.i 1.58930i
\(392\) 0 0
\(393\) −161508. −1.04571
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 126504. 73037.2i 0.802646 0.463408i −0.0417498 0.999128i \(-0.513293\pi\)
0.844395 + 0.535720i \(0.179960\pi\)
\(398\) 0 0
\(399\) −21486.7 189985.i −0.134966 1.19336i
\(400\) 0 0
\(401\) 81104.6 + 140477.i 0.504379 + 0.873609i 0.999987 + 0.00506331i \(0.00161171\pi\)
−0.495609 + 0.868546i \(0.665055\pi\)
\(402\) 0 0
\(403\) −11666.0 + 20206.1i −0.0718310 + 0.124415i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 297878. 1.79825
\(408\) 0 0
\(409\) −130323. 75242.3i −0.779069 0.449796i 0.0570313 0.998372i \(-0.481837\pi\)
−0.836100 + 0.548577i \(0.815170\pi\)
\(410\) 0 0
\(411\) 41803.5 24135.3i 0.247474 0.142879i
\(412\) 0 0
\(413\) 44949.7 103144.i 0.263528 0.604703i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −97338.0 + 168594.i −0.559771 + 0.969551i
\(418\) 0 0
\(419\) 179241.i 1.02096i −0.859889 0.510482i \(-0.829467\pi\)
0.859889 0.510482i \(-0.170533\pi\)
\(420\) 0 0
\(421\) −124884. −0.704600 −0.352300 0.935887i \(-0.614600\pi\)
−0.352300 + 0.935887i \(0.614600\pi\)
\(422\) 0 0
\(423\) −8791.80 5075.95i −0.0491357 0.0283685i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 79771.1 + 107991.i 0.437512 + 0.592289i
\(428\) 0 0
\(429\) −75746.0 131196.i −0.411571 0.712862i
\(430\) 0 0
\(431\) −82455.3 + 142817.i −0.443878 + 0.768820i −0.997973 0.0636334i \(-0.979731\pi\)
0.554095 + 0.832454i \(0.313064\pi\)
\(432\) 0 0
\(433\) 137151.i 0.731513i 0.930711 + 0.365756i \(0.119190\pi\)
−0.930711 + 0.365756i \(0.880810\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 304561. + 175838.i 1.59482 + 0.920768i
\(438\) 0 0
\(439\) −13345.3 + 7704.93i −0.0692469 + 0.0399797i −0.534224 0.845343i \(-0.679396\pi\)
0.464977 + 0.885323i \(0.346063\pi\)
\(440\) 0 0
\(441\) −7983.81 8590.08i −0.0410519 0.0441692i
\(442\) 0 0
\(443\) 112375. + 194639.i 0.572612 + 0.991794i 0.996297 + 0.0859837i \(0.0274033\pi\)
−0.423684 + 0.905810i \(0.639263\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 232303.i 1.16262i
\(448\) 0 0
\(449\) 94012.1 0.466328 0.233164 0.972437i \(-0.425092\pi\)
0.233164 + 0.972437i \(0.425092\pi\)
\(450\) 0 0
\(451\) 972.914 + 561.712i 0.00478323 + 0.00276160i
\(452\) 0 0
\(453\) −214032. + 123571.i −1.04299 + 0.602173i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 67096.9 + 116215.i 0.321270 + 0.556455i 0.980750 0.195266i \(-0.0625571\pi\)
−0.659481 + 0.751722i \(0.729224\pi\)
\(458\) 0 0
\(459\) −102599. + 177706.i −0.486986 + 0.843484i
\(460\) 0 0
\(461\) 159256.i 0.749365i 0.927153 + 0.374683i \(0.122248\pi\)
−0.927153 + 0.374683i \(0.877752\pi\)
\(462\) 0 0
\(463\) 70003.7 0.326557 0.163279 0.986580i \(-0.447793\pi\)
0.163279 + 0.986580i \(0.447793\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −22638.0 + 13070.1i −0.103802 + 0.0599300i −0.551002 0.834504i \(-0.685754\pi\)
0.447200 + 0.894434i \(0.352421\pi\)
\(468\) 0 0
\(469\) −84963.8 37027.0i −0.386268 0.168334i
\(470\) 0 0
\(471\) −181472. 314319.i −0.818028 1.41687i
\(472\) 0 0
\(473\) −214362. + 371286.i −0.958133 + 1.65953i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 11622.3 0.0510805
\(478\) 0 0
\(479\) 177431. + 102440.i 0.773321 + 0.446477i 0.834058 0.551677i \(-0.186012\pi\)
−0.0607373 + 0.998154i \(0.519345\pi\)
\(480\) 0 0
\(481\) 267872. 154656.i 1.15781 0.668462i
\(482\) 0 0
\(483\) 376887. 42624.7i 1.61554 0.182712i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −75432.7 + 130653.i −0.318055 + 0.550887i −0.980082 0.198593i \(-0.936363\pi\)
0.662027 + 0.749480i \(0.269696\pi\)
\(488\) 0 0
\(489\) 161122.i 0.673809i
\(490\) 0 0
\(491\) 302409. 1.25439 0.627194 0.778863i \(-0.284203\pi\)
0.627194 + 0.778863i \(0.284203\pi\)
\(492\) 0 0
\(493\) −173777. 100330.i −0.714989 0.412799i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −44622.3 394549.i −0.180650 1.59731i
\(498\) 0 0
\(499\) −233347. 404168.i −0.937131 1.62316i −0.770789 0.637090i \(-0.780138\pi\)
−0.166341 0.986068i \(-0.553195\pi\)
\(500\) 0 0
\(501\) −271.091 + 469.544i −0.00108004 + 0.00187069i
\(502\) 0 0
\(503\) 476574.i 1.88362i −0.336140 0.941812i \(-0.609122\pi\)
0.336140 0.941812i \(-0.390878\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 92992.9 + 53689.5i 0.361771 + 0.208869i
\(508\) 0 0
\(509\) −375715. + 216919.i −1.45018 + 0.837264i −0.998491 0.0549101i \(-0.982513\pi\)
−0.451692 + 0.892174i \(0.649179\pi\)
\(510\) 0 0
\(511\) 18796.0 43130.1i 0.0719820 0.165173i
\(512\) 0 0
\(513\) 148500. + 257210.i 0.564276 + 0.977355i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 260781.i 0.975654i
\(518\) 0 0
\(519\) 325959. 1.21012
\(520\) 0 0
\(521\) 163547. + 94423.9i 0.602514 + 0.347862i 0.770030 0.638008i \(-0.220241\pi\)
−0.167516 + 0.985869i \(0.553575\pi\)
\(522\) 0 0
\(523\) 331920. 191634.i 1.21347 0.700598i 0.249957 0.968257i \(-0.419583\pi\)
0.963514 + 0.267659i \(0.0862500\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −26047.6 45115.7i −0.0937877 0.162445i
\(528\) 0 0
\(529\) −208903. + 361830.i −0.746504 + 1.29298i
\(530\) 0 0
\(531\) 11215.3i 0.0397762i
\(532\) 0 0
\(533\) 1166.54 0.00410627
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −279257. + 161229.i −0.968403 + 0.559107i
\(538\) 0 0
\(539\) 88554.5 287942.i 0.304813 0.991123i
\(540\) 0 0
\(541\) 122882. + 212838.i 0.419850 + 0.727202i 0.995924 0.0901957i \(-0.0287492\pi\)
−0.576074 + 0.817398i \(0.695416\pi\)
\(542\) 0 0
\(543\) 229922. 398236.i 0.779795 1.35064i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −426220. −1.42449 −0.712245 0.701931i \(-0.752322\pi\)
−0.712245 + 0.701931i \(0.752322\pi\)
\(548\) 0 0
\(549\) 11590.1 + 6691.54i 0.0384541 + 0.0222015i
\(550\) 0 0
\(551\) −251523. + 145217.i −0.828466 + 0.478315i
\(552\) 0 0
\(553\) −330232. + 243936.i −1.07986 + 0.797674i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −227674. + 394342.i −0.733841 + 1.27105i 0.221389 + 0.975186i \(0.428941\pi\)
−0.955230 + 0.295865i \(0.904392\pi\)
\(558\) 0 0
\(559\) 445180.i 1.42466i
\(560\) 0 0
\(561\) 338248. 1.07475
\(562\) 0 0
\(563\) 4451.44 + 2570.04i 0.0140438 + 0.00810817i 0.507005 0.861943i \(-0.330752\pi\)
−0.492962 + 0.870051i \(0.664086\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 311419. + 135715.i 0.968676 + 0.422146i
\(568\) 0 0
\(569\) −229289. 397141.i −0.708206 1.22665i −0.965522 0.260321i \(-0.916172\pi\)
0.257317 0.966327i \(-0.417162\pi\)
\(570\) 0 0
\(571\) 99846.4 172939.i 0.306239 0.530421i −0.671298 0.741188i \(-0.734263\pi\)
0.977536 + 0.210767i \(0.0675961\pi\)
\(572\) 0 0
\(573\) 322681.i 0.982797i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −363358. 209785.i −1.09140 0.630119i −0.157450 0.987527i \(-0.550327\pi\)
−0.933948 + 0.357408i \(0.883661\pi\)
\(578\) 0 0
\(579\) −82722.6 + 47759.9i −0.246756 + 0.142464i
\(580\) 0 0
\(581\) −356960. + 40371.0i −1.05747 + 0.119596i
\(582\) 0 0
\(583\) 149277. + 258555.i 0.439192 + 0.760703i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 536841.i 1.55801i −0.627019 0.779004i \(-0.715725\pi\)
0.627019 0.779004i \(-0.284275\pi\)
\(588\) 0 0
\(589\) −75401.9 −0.217346
\(590\) 0 0
\(591\) −153417. 88575.4i −0.439237 0.253593i
\(592\) 0 0
\(593\) 296791. 171352.i 0.843998 0.487282i −0.0146235 0.999893i \(-0.504655\pi\)
0.858621 + 0.512611i \(0.171322\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −138238. 239435.i −0.387862 0.671797i
\(598\) 0 0
\(599\) 234677. 406472.i 0.654059 1.13286i −0.328070 0.944653i \(-0.606398\pi\)
0.982129 0.188210i \(-0.0602685\pi\)
\(600\) 0 0
\(601\) 239086.i 0.661919i 0.943645 + 0.330959i \(0.107372\pi\)
−0.943645 + 0.330959i \(0.892628\pi\)
\(602\) 0 0
\(603\) −9238.56 −0.0254080
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −345589. + 199526.i −0.937955 + 0.541529i −0.889319 0.457288i \(-0.848821\pi\)
−0.0486365 + 0.998817i \(0.515488\pi\)
\(608\) 0 0
\(609\) −125141. + 287155.i −0.337416 + 0.774251i
\(610\) 0 0
\(611\) −135396. 234512.i −0.362679 0.628178i
\(612\) 0 0
\(613\) −222797. + 385895.i −0.592909 + 1.02695i 0.400930 + 0.916109i \(0.368687\pi\)
−0.993838 + 0.110839i \(0.964646\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 211730. 0.556176 0.278088 0.960556i \(-0.410299\pi\)
0.278088 + 0.960556i \(0.410299\pi\)
\(618\) 0 0
\(619\) −140215. 80953.0i −0.365942 0.211277i 0.305742 0.952114i \(-0.401095\pi\)
−0.671684 + 0.740838i \(0.734429\pi\)
\(620\) 0 0
\(621\) −510245. + 294590.i −1.32311 + 0.763898i
\(622\) 0 0
\(623\) 56814.8 + 76914.0i 0.146381 + 0.198166i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 244788. 423985.i 0.622666 1.07849i
\(628\) 0 0
\(629\) 690625.i 1.74558i
\(630\) 0 0
\(631\) −169560. −0.425858 −0.212929 0.977068i \(-0.568300\pi\)
−0.212929 + 0.977068i \(0.568300\pi\)
\(632\) 0 0
\(633\) −619978. 357945.i −1.54728 0.893323i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −69863.0 304913.i −0.172174 0.751446i
\(638\) 0 0
\(639\) −19789.9 34277.1i −0.0484665 0.0839464i
\(640\) 0 0
\(641\) 138209. 239386.i 0.336373 0.582615i −0.647375 0.762172i \(-0.724133\pi\)
0.983748 + 0.179557i \(0.0574664\pi\)
\(642\) 0 0
\(643\) 585755.i 1.41675i 0.705835 + 0.708376i \(0.250572\pi\)
−0.705835 + 0.708376i \(0.749428\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 503195. + 290520.i 1.20206 + 0.694012i 0.961014 0.276500i \(-0.0891747\pi\)
0.241051 + 0.970513i \(0.422508\pi\)
\(648\) 0 0
\(649\) 249501. 144050.i 0.592357 0.341997i
\(650\) 0 0
\(651\) −65411.6 + 48318.2i −0.154345 + 0.114012i
\(652\) 0 0
\(653\) −227589. 394196.i −0.533735 0.924456i −0.999223 0.0394018i \(-0.987455\pi\)
0.465489 0.885054i \(-0.345879\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 4689.77i 0.0108648i
\(658\) 0 0
\(659\) 516645. 1.18965 0.594827 0.803853i \(-0.297220\pi\)
0.594827 + 0.803853i \(0.297220\pi\)
\(660\) 0 0
\(661\) 26623.2 + 15370.9i 0.0609338 + 0.0351801i 0.530157 0.847899i \(-0.322133\pi\)
−0.469224 + 0.883079i \(0.655466\pi\)
\(662\) 0 0
\(663\) 304175. 175615.i 0.691984 0.399517i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −288078. 498965.i −0.647527 1.12155i
\(668\) 0 0
\(669\) −212691. + 368391.i −0.475222 + 0.823109i
\(670\) 0 0
\(671\) 343784.i 0.763556i
\(672\) 0 0
\(673\) −652774. −1.44123 −0.720614 0.693336i \(-0.756140\pi\)
−0.720614 + 0.693336i \(0.756140\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −367890. + 212401.i −0.802676 + 0.463425i −0.844406 0.535703i \(-0.820046\pi\)
0.0417297 + 0.999129i \(0.486713\pi\)
\(678\) 0 0
\(679\) 228019. 25788.2i 0.494575 0.0559348i
\(680\) 0 0
\(681\) −403528. 698931.i −0.870121 1.50709i
\(682\) 0 0
\(683\) 220459. 381847.i 0.472593 0.818555i −0.526915 0.849918i \(-0.676651\pi\)
0.999508 + 0.0313629i \(0.00998474\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −870195. −1.84375
\(688\) 0 0
\(689\) 268479. + 155006.i 0.565551 + 0.326521i
\(690\) 0 0
\(691\) 307462. 177513.i 0.643925 0.371770i −0.142200 0.989838i \(-0.545418\pi\)
0.786125 + 0.618068i \(0.212084\pi\)
\(692\) 0 0
\(693\) −3374.67 29838.8i −0.00702692 0.0621319i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1302.32 + 2255.68i −0.00268072 + 0.00464314i
\(698\) 0 0
\(699\) 305280.i 0.624804i
\(700\) 0 0
\(701\) 124187. 0.252720 0.126360 0.991984i \(-0.459671\pi\)
0.126360 + 0.991984i \(0.459671\pi\)
\(702\) 0 0
\(703\) 865681. + 499801.i 1.75165 + 1.01131i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 245029. 562254.i 0.490206 1.12485i
\(708\) 0 0
\(709\) −258615. 447935.i −0.514472 0.891092i −0.999859 0.0167927i \(-0.994654\pi\)
0.485387 0.874300i \(-0.338679\pi\)
\(710\) 0 0
\(711\) −20462.4 + 35441.9i −0.0404778 + 0.0701096i
\(712\) 0 0
\(713\) 149580.i 0.294236i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 37781.1 + 21813.0i 0.0734914 + 0.0424303i
\(718\) 0 0
\(719\) −191605. + 110623.i −0.370637 + 0.213987i −0.673737 0.738971i \(-0.735312\pi\)
0.303100 + 0.952959i \(0.401978\pi\)
\(720\) 0 0
\(721\) −132853. 179852.i −0.255565 0.345975i
\(722\) 0 0
\(723\) 14135.8 + 24483.9i 0.0270423 + 0.0468387i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 689793.i 1.30512i 0.757738 + 0.652559i \(0.226305\pi\)
−0.757738 + 0.652559i \(0.773695\pi\)
\(728\) 0 0
\(729\) −495646. −0.932646
\(730\) 0 0
\(731\) −860819. 496994.i −1.61093 0.930072i
\(732\) 0 0
\(733\) −601579. + 347322.i −1.11966 + 0.646434i −0.941313 0.337534i \(-0.890407\pi\)
−0.178344 + 0.983968i \(0.557074\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −118660. 205525.i −0.218459 0.378381i
\(738\) 0 0
\(739\) 298417. 516873.i 0.546430 0.946445i −0.452085 0.891975i \(-0.649320\pi\)
0.998515 0.0544702i \(-0.0173470\pi\)
\(740\) 0 0
\(741\) 508367.i 0.925851i
\(742\) 0 0
\(743\) −246075. −0.445749 −0.222874 0.974847i \(-0.571544\pi\)
−0.222874 + 0.974847i \(0.571544\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −31011.4 + 17904.4i −0.0555751 + 0.0320863i
\(748\) 0 0
\(749\) 685707. 506518.i 1.22229 0.902883i
\(750\) 0 0
\(751\) −300133. 519845.i −0.532149 0.921709i −0.999296 0.0375292i \(-0.988051\pi\)
0.467147 0.884180i \(-0.345282\pi\)
\(752\) 0 0
\(753\) −222705. + 385737.i −0.392772 + 0.680301i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 526244. 0.918323 0.459161 0.888353i \(-0.348150\pi\)
0.459161 + 0.888353i \(0.348150\pi\)
\(758\) 0 0
\(759\) 841090. + 485604.i 1.46002 + 0.842943i
\(760\) 0 0
\(761\) −49134.9 + 28368.1i −0.0848440 + 0.0489847i −0.541822 0.840493i \(-0.682265\pi\)
0.456978 + 0.889478i \(0.348932\pi\)
\(762\) 0 0
\(763\) −347269. 151339.i −0.596509 0.259957i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 149579. 259078.i 0.254261 0.440392i
\(768\) 0 0
\(769\) 490999.i 0.830286i 0.909756 + 0.415143i \(0.136268\pi\)
−0.909756 + 0.415143i \(0.863732\pi\)
\(770\) 0 0
\(771\) −925814. −1.55745
\(772\) 0 0
\(773\) 392618. + 226678.i 0.657070 + 0.379359i 0.791160 0.611610i \(-0.209478\pi\)
−0.134090 + 0.990969i \(0.542811\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1.07126e6 121156.i 1.77440 0.200679i
\(778\) 0 0
\(779\) 1884.96 + 3264.84i 0.00310618 + 0.00538007i
\(780\) 0 0
\(781\) 508361. 880508.i 0.833433 1.44355i
\(782\) 0 0
\(783\) 486578.i 0.793650i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 873614. + 504381.i 1.41049 + 0.814347i 0.995434 0.0954489i \(-0.0304286\pi\)
0.415056 + 0.909796i \(0.363762\pi\)
\(788\) 0 0
\(789\) −662579. + 382540.i −1.06435 + 0.614501i
\(790\) 0 0
\(791\) −17229.3 152341.i −0.0275368 0.243480i
\(792\) 0 0
\(793\) 178490. + 309154.i 0.283836 + 0.491618i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 594164.i 0.935384i 0.883892 + 0.467692i \(0.154914\pi\)
−0.883892 + 0.467692i \(0.845086\pi\)
\(798\) 0 0
\(799\) 604617. 0.947080
\(800\) 0 0
\(801\) 8254.73 + 4765.87i 0.0128658 + 0.00742809i
\(802\) 0 0
\(803\) 104331. 60235.3i 0.161801 0.0934157i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −590472. 1.02273e6i −0.906676 1.57041i
\(808\) 0 0
\(809\) 474663. 822141.i 0.725251 1.25617i −0.233619 0.972328i \(-0.575057\pi\)
0.958870 0.283844i \(-0.0916098\pi\)
\(810\) 0 0
\(811\) 920610.i 1.39970i −0.714291 0.699849i \(-0.753251\pi\)
0.714291 0.699849i \(-0.246749\pi\)
\(812\) 0 0
\(813\) −71222.4 −0.107755
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −1.24594e6 + 719343.i −1.86661 + 1.07769i
\(818\) 0 0
\(819\) −18526.8 25080.9i −0.0276205 0.0373917i
\(820\) 0 0
\(821\) 267658. + 463597.i 0.397094 + 0.687787i 0.993366 0.114995i \(-0.0366853\pi\)
−0.596272 + 0.802783i \(0.703352\pi\)
\(822\) 0 0
\(823\) 224898. 389535.i 0.332037 0.575105i −0.650874 0.759186i \(-0.725597\pi\)
0.982911 + 0.184081i \(0.0589308\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −166361. −0.243243 −0.121622 0.992577i \(-0.538809\pi\)
−0.121622 + 0.992577i \(0.538809\pi\)
\(828\) 0 0
\(829\) 905482. + 522780.i 1.31756 + 0.760694i 0.983336 0.181799i \(-0.0581920\pi\)
0.334225 + 0.942493i \(0.391525\pi\)
\(830\) 0 0
\(831\) 607461. 350718.i 0.879663 0.507874i
\(832\) 0 0
\(833\) 667588. + 205312.i 0.962096 + 0.295886i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 63162.3 109400.i 0.0901585 0.156159i
\(838\) 0 0
\(839\) 933965.i 1.32680i −0.748263 0.663402i \(-0.769112\pi\)
0.748263 0.663402i \(-0.230888\pi\)
\(840\) 0 0
\(841\) −231460. −0.327253
\(842\) 0 0
\(843\) −53054.4 30631.0i −0.0746563 0.0431028i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 43414.8 32069.7i 0.0605162 0.0447021i
\(848\) 0 0
\(849\) 111857. + 193742.i 0.155184 + 0.268787i
\(850\) 0 0
\(851\) −991492. + 1.71731e6i −1.36908 + 2.37132i
\(852\) 0 0
\(853\) 471325.i 0.647773i −0.946096 0.323886i \(-0.895010\pi\)
0.946096 0.323886i \(-0.104990\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −894015. 516160.i −1.21726 0.702785i −0.252929 0.967485i \(-0.581394\pi\)
−0.964331 + 0.264700i \(0.914727\pi\)
\(858\) 0 0
\(859\) −166917. + 96369.5i −0.226211 + 0.130603i −0.608823 0.793306i \(-0.708358\pi\)
0.382612 + 0.923909i \(0.375025\pi\)
\(860\) 0 0
\(861\) 3727.35 + 1624.37i 0.00502799 + 0.00219119i
\(862\) 0 0
\(863\) −262740. 455079.i −0.352781 0.611034i 0.633955 0.773370i \(-0.281431\pi\)
−0.986736 + 0.162336i \(0.948097\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 10199.7i 0.0135690i
\(868\) 0 0
\(869\) −1.05127e6 −1.39212
\(870\) 0 0
\(871\) −213414. 123214.i −0.281311 0.162415i
\(872\) 0 0
\(873\) 19809.5 11437.0i 0.0259923 0.0150067i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −459691. 796209.i −0.597678 1.03521i −0.993163 0.116736i \(-0.962757\pi\)
0.395485 0.918472i \(-0.370577\pi\)
\(878\) 0 0
\(879\) −175055. + 303204.i −0.226567 + 0.392425i
\(880\) 0 0
\(881\) 307096.i 0.395660i −0.980236 0.197830i \(-0.936611\pi\)
0.980236 0.197830i \(-0.0633894\pi\)
\(882\) 0 0
\(883\) −747006. −0.958082 −0.479041 0.877792i \(-0.659016\pi\)
−0.479041 + 0.877792i \(0.659016\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −352945. + 203773.i −0.448600 + 0.259000i −0.707239 0.706975i \(-0.750059\pi\)
0.258639 + 0.965974i \(0.416726\pi\)
\(888\) 0 0
\(889\) 124294. + 1.09901e6i 0.157271 + 1.39059i
\(890\) 0 0
\(891\) 434925. + 753312.i 0.547847 + 0.948898i
\(892\) 0 0
\(893\) 437557. 757872.i 0.548696 0.950370i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1.00849e6 1.25339
\(898\) 0 0
\(899\) 106982. + 61765.9i 0.132370 + 0.0764239i
\(900\) 0 0
\(901\) −599454. + 346095.i −0.738425 + 0.426330i
\(902\) 0 0
\(903\) −619897. + 1.42244e6i −0.760228 + 1.74445i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −198239. + 343360.i −0.240976 + 0.417383i −0.960993 0.276574i \(-0.910801\pi\)
0.720016 + 0.693957i \(0.244134\pi\)
\(908\) 0 0
\(909\) 61136.8i 0.0739903i
\(910\) 0 0
\(911\) 682934. 0.822890 0.411445 0.911434i \(-0.365024\pi\)
0.411445 + 0.911434i \(0.365024\pi\)
\(912\) 0 0
\(913\) −796620. 459929.i −0.955673 0.551758i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −507382. 686877.i −0.603388 0.816846i
\(918\) 0 0
\(919\) 175122. + 303321.i 0.207353 + 0.359146i 0.950880 0.309560i \(-0.100182\pi\)
−0.743527 + 0.668706i \(0.766848\pi\)
\(920\) 0 0
\(921\) −49094.0 + 85033.2i −0.0578774 + 0.100247i
\(922\) 0 0
\(923\) 1.05575e6i 1.23924i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −19302.5 11144.3i −0.0224623 0.0129686i
\(928\) 0 0
\(929\) −1.34168e6 + 774617.i −1.55459 + 0.897544i −0.556833 + 0.830624i \(0.687984\pi\)
−0.997758 + 0.0669199i \(0.978683\pi\)
\(930\) 0 0
\(931\) 740483. 688222.i 0.854310 0.794016i
\(932\) 0 0
\(933\) 425739. + 737401.i 0.489080 + 0.847111i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 431939.i 0.491975i −0.969273 0.245988i \(-0.920888\pi\)
0.969273 0.245988i \(-0.0791122\pi\)
\(938\) 0 0
\(939\) 827664. 0.938692
\(940\) 0 0
\(941\) −560859. 323812.i −0.633395 0.365691i 0.148671 0.988887i \(-0.452501\pi\)
−0.782066 + 0.623196i \(0.785834\pi\)
\(942\) 0 0
\(943\) −6476.71 + 3739.33i −0.00728335 + 0.00420504i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −875350. 1.51615e6i −0.976071 1.69061i −0.676353 0.736577i \(-0.736441\pi\)
−0.299718 0.954028i \(-0.596893\pi\)
\(948\) 0 0
\(949\) 62547.3 108335.i 0.0694506 0.120292i
\(950\) 0 0
\(951\) 83586.8i 0.0924223i
\(952\) 0 0
\(953\) 1.11747e6 1.23041 0.615206 0.788367i \(-0.289073\pi\)
0.615206 + 0.788367i \(0.289073\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −694619. + 401039.i −0.758443 + 0.437887i
\(958\) 0 0
\(959\) 233971. + 101964.i 0.254405 + 0.110869i
\(960\) 0 0
\(961\) −445725. 772018.i −0.482637 0.835951i
\(962\) 0 0
\(963\) 42488.9 73592.9i 0.0458166 0.0793567i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.24016e6 1.32625 0.663126 0.748508i \(-0.269229\pi\)
0.663126 + 0.748508i \(0.269229\pi\)
\(968\) 0 0
\(969\) 983001. + 567536.i 1.04690 + 0.604430i
\(970\) 0 0
\(971\) −429350. + 247885.i −0.455379 + 0.262913i −0.710099 0.704101i \(-0.751350\pi\)
0.254720 + 0.967015i \(0.418017\pi\)
\(972\) 0 0
\(973\) −1.02280e6 + 115676.i −1.08035 + 0.122184i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 314713. 545099.i 0.329705 0.571066i −0.652748 0.757575i \(-0.726384\pi\)
0.982453 + 0.186509i \(0.0597174\pi\)
\(978\) 0 0
\(979\) 244851.i 0.255468i
\(980\) 0 0
\(981\) −37760.4 −0.0392373
\(982\) 0 0
\(983\) −204127. 117853.i −0.211248 0.121964i 0.390643 0.920542i \(-0.372253\pi\)
−0.601891 + 0.798578i \(0.705586\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −106068. 937848.i −0.108880 0.962716i
\(988\) 0 0
\(989\) −1.42701e6 2.47166e6i −1.45893 2.52695i
\(990\) 0 0
\(991\) −651369. + 1.12820e6i −0.663254 + 1.14879i 0.316502 + 0.948592i \(0.397492\pi\)
−0.979756 + 0.200198i \(0.935842\pi\)
\(992\) 0 0
\(993\) 1.19185e6i 1.20872i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.52751e6 + 881908.i 1.53672 + 0.887224i 0.999028 + 0.0440803i \(0.0140357\pi\)
0.537689 + 0.843143i \(0.319298\pi\)
\(998\) 0 0
\(999\) −1.45032e6 + 837341.i −1.45322 + 0.839018i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.5.s.b.101.7 20
5.2 odd 4 700.5.o.b.549.15 40
5.3 odd 4 700.5.o.b.549.6 40
5.4 even 2 140.5.r.a.101.4 yes 20
7.5 odd 6 inner 700.5.s.b.201.7 20
35.4 even 6 980.5.d.a.881.15 20
35.12 even 12 700.5.o.b.649.6 40
35.19 odd 6 140.5.r.a.61.4 20
35.24 odd 6 980.5.d.a.881.6 20
35.33 even 12 700.5.o.b.649.15 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.5.r.a.61.4 20 35.19 odd 6
140.5.r.a.101.4 yes 20 5.4 even 2
700.5.o.b.549.6 40 5.3 odd 4
700.5.o.b.549.15 40 5.2 odd 4
700.5.o.b.649.6 40 35.12 even 12
700.5.o.b.649.15 40 35.33 even 12
700.5.s.b.101.7 20 1.1 even 1 trivial
700.5.s.b.201.7 20 7.5 odd 6 inner
980.5.d.a.881.6 20 35.24 odd 6
980.5.d.a.881.15 20 35.4 even 6