Properties

Label 700.5.o.b.649.6
Level $700$
Weight $5$
Character 700.649
Analytic conductor $72.359$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,5,Mod(549,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.549");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 700.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(72.3589741587\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 649.6
Character \(\chi\) \(=\) 700.649
Dual form 700.5.o.b.549.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.63369 - 8.02579i) q^{3} +(48.6896 + 5.50663i) q^{7} +(-2.44218 + 4.22998i) q^{9} +(-62.7346 - 108.660i) q^{11} -130.285 q^{13} +(-145.449 - 251.925i) q^{17} +(364.633 + 210.521i) q^{19} +(-181.417 - 416.288i) q^{21} +(723.350 + 417.626i) q^{23} -705.393 q^{27} -689.798 q^{29} +(155.091 - 89.5420i) q^{31} +(-581.386 + 1006.99i) q^{33} +(-2056.04 - 1187.06i) q^{37} +(603.701 + 1045.64i) q^{39} +8.95378i q^{41} -3416.97i q^{43} +(1039.22 - 1799.99i) q^{47} +(2340.35 + 536.232i) q^{49} +(-1347.93 + 2334.68i) q^{51} +(2060.70 - 1189.75i) q^{53} -3901.96i q^{57} +(1988.55 - 1148.09i) q^{59} +(2372.90 + 1369.99i) q^{61} +(-142.202 + 192.508i) q^{63} +(1638.05 - 945.729i) q^{67} -7740.60i q^{69} -8103.36 q^{71} +(480.080 + 831.523i) q^{73} +(-2456.18 - 5636.05i) q^{77} +(-4189.37 + 7256.20i) q^{79} +(3466.39 + 6003.96i) q^{81} -7331.34 q^{83} +(3196.31 + 5536.17i) q^{87} +(-1690.03 - 975.741i) q^{89} +(-6343.53 - 717.433i) q^{91} +(-1437.29 - 829.820i) q^{93} -4683.12 q^{97} +612.837 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 468 q^{9} - 300 q^{11} - 1956 q^{19} - 5152 q^{21} + 624 q^{29} + 10392 q^{31} + 13440 q^{39} + 16384 q^{49} + 4264 q^{51} - 20016 q^{59} + 4416 q^{61} - 59664 q^{71} - 18664 q^{79} + 14132 q^{81}+ \cdots - 6120 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.63369 8.02579i −0.514855 0.891754i −0.999851 0.0172383i \(-0.994513\pi\)
0.484997 0.874516i \(-0.338821\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 48.6896 + 5.50663i 0.993665 + 0.112380i
\(8\) 0 0
\(9\) −2.44218 + 4.22998i −0.0301504 + 0.0522220i
\(10\) 0 0
\(11\) −62.7346 108.660i −0.518468 0.898013i −0.999770 0.0214579i \(-0.993169\pi\)
0.481302 0.876555i \(-0.340164\pi\)
\(12\) 0 0
\(13\) −130.285 −0.770918 −0.385459 0.922725i \(-0.625957\pi\)
−0.385459 + 0.922725i \(0.625957\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −145.449 251.925i −0.503284 0.871713i −0.999993 0.00379573i \(-0.998792\pi\)
0.496709 0.867917i \(-0.334542\pi\)
\(18\) 0 0
\(19\) 364.633 + 210.521i 1.01006 + 0.583161i 0.911210 0.411941i \(-0.135149\pi\)
0.0988538 + 0.995102i \(0.468482\pi\)
\(20\) 0 0
\(21\) −181.417 416.288i −0.411377 0.943965i
\(22\) 0 0
\(23\) 723.350 + 417.626i 1.36739 + 0.789463i 0.990594 0.136833i \(-0.0436923\pi\)
0.376796 + 0.926296i \(0.377026\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −705.393 −0.967617
\(28\) 0 0
\(29\) −689.798 −0.820211 −0.410106 0.912038i \(-0.634508\pi\)
−0.410106 + 0.912038i \(0.634508\pi\)
\(30\) 0 0
\(31\) 155.091 89.5420i 0.161385 0.0931758i −0.417132 0.908846i \(-0.636965\pi\)
0.578517 + 0.815670i \(0.303631\pi\)
\(32\) 0 0
\(33\) −581.386 + 1006.99i −0.533871 + 0.924692i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2056.04 1187.06i −1.50186 0.867098i −0.999998 0.00214865i \(-0.999316\pi\)
−0.501860 0.864949i \(-0.667351\pi\)
\(38\) 0 0
\(39\) 603.701 + 1045.64i 0.396911 + 0.687470i
\(40\) 0 0
\(41\) 8.95378i 0.00532646i 0.999996 + 0.00266323i \(0.000847733\pi\)
−0.999996 + 0.00266323i \(0.999152\pi\)
\(42\) 0 0
\(43\) 3416.97i 1.84801i −0.382384 0.924004i \(-0.624897\pi\)
0.382384 0.924004i \(-0.375103\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1039.22 1799.99i 0.470450 0.814844i −0.528979 0.848635i \(-0.677425\pi\)
0.999429 + 0.0337914i \(0.0107582\pi\)
\(48\) 0 0
\(49\) 2340.35 + 536.232i 0.974741 + 0.223337i
\(50\) 0 0
\(51\) −1347.93 + 2334.68i −0.518236 + 0.897611i
\(52\) 0 0
\(53\) 2060.70 1189.75i 0.733607 0.423548i −0.0861333 0.996284i \(-0.527451\pi\)
0.819740 + 0.572735i \(0.194118\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3901.96i 1.20097i
\(58\) 0 0
\(59\) 1988.55 1148.09i 0.571257 0.329815i −0.186394 0.982475i \(-0.559680\pi\)
0.757651 + 0.652660i \(0.226347\pi\)
\(60\) 0 0
\(61\) 2372.90 + 1369.99i 0.637705 + 0.368179i 0.783730 0.621102i \(-0.213315\pi\)
−0.146025 + 0.989281i \(0.546648\pi\)
\(62\) 0 0
\(63\) −142.202 + 192.508i −0.0358281 + 0.0485029i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1638.05 945.729i 0.364903 0.210677i −0.306326 0.951927i \(-0.599100\pi\)
0.671229 + 0.741250i \(0.265767\pi\)
\(68\) 0 0
\(69\) 7740.60i 1.62583i
\(70\) 0 0
\(71\) −8103.36 −1.60749 −0.803746 0.594973i \(-0.797163\pi\)
−0.803746 + 0.594973i \(0.797163\pi\)
\(72\) 0 0
\(73\) 480.080 + 831.523i 0.0900882 + 0.156037i 0.907548 0.419948i \(-0.137952\pi\)
−0.817460 + 0.575986i \(0.804618\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2456.18 5636.05i −0.414265 0.950590i
\(78\) 0 0
\(79\) −4189.37 + 7256.20i −0.671266 + 1.16267i 0.306280 + 0.951941i \(0.400916\pi\)
−0.977545 + 0.210725i \(0.932418\pi\)
\(80\) 0 0
\(81\) 3466.39 + 6003.96i 0.528332 + 0.915098i
\(82\) 0 0
\(83\) −7331.34 −1.06421 −0.532105 0.846679i \(-0.678599\pi\)
−0.532105 + 0.846679i \(0.678599\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3196.31 + 5536.17i 0.422290 + 0.731427i
\(88\) 0 0
\(89\) −1690.03 975.741i −0.213361 0.123184i 0.389511 0.921022i \(-0.372644\pi\)
−0.602872 + 0.797838i \(0.705977\pi\)
\(90\) 0 0
\(91\) −6343.53 717.433i −0.766035 0.0866360i
\(92\) 0 0
\(93\) −1437.29 829.820i −0.166180 0.0959440i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −4683.12 −0.497728 −0.248864 0.968538i \(-0.580057\pi\)
−0.248864 + 0.968538i \(0.580057\pi\)
\(98\) 0 0
\(99\) 612.837 0.0625280
\(100\) 0 0
\(101\) −10839.9 + 6258.42i −1.06263 + 0.613511i −0.926159 0.377133i \(-0.876910\pi\)
−0.136473 + 0.990644i \(0.543577\pi\)
\(102\) 0 0
\(103\) −2281.63 + 3951.90i −0.215065 + 0.372504i −0.953293 0.302048i \(-0.902330\pi\)
0.738227 + 0.674552i \(0.235663\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −15067.1 8698.97i −1.31602 0.759802i −0.332930 0.942951i \(-0.608037\pi\)
−0.983085 + 0.183150i \(0.941371\pi\)
\(108\) 0 0
\(109\) 3865.44 + 6695.14i 0.325346 + 0.563516i 0.981582 0.191039i \(-0.0611858\pi\)
−0.656236 + 0.754556i \(0.727852\pi\)
\(110\) 0 0
\(111\) 22001.8i 1.78572i
\(112\) 0 0
\(113\) 3128.82i 0.245032i 0.992467 + 0.122516i \(0.0390963\pi\)
−0.992467 + 0.122516i \(0.960904\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 318.180 551.104i 0.0232435 0.0402589i
\(118\) 0 0
\(119\) −5694.59 13067.1i −0.402132 0.922750i
\(120\) 0 0
\(121\) −550.767 + 953.956i −0.0376181 + 0.0651564i
\(122\) 0 0
\(123\) 71.8611 41.4890i 0.00474989 0.00274235i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 22571.7i 1.39945i 0.714412 + 0.699725i \(0.246694\pi\)
−0.714412 + 0.699725i \(0.753306\pi\)
\(128\) 0 0
\(129\) −27423.8 + 15833.2i −1.64797 + 0.951455i
\(130\) 0 0
\(131\) −15092.8 8713.81i −0.879480 0.507768i −0.00899336 0.999960i \(-0.502863\pi\)
−0.870487 + 0.492191i \(0.836196\pi\)
\(132\) 0 0
\(133\) 16594.6 + 12258.1i 0.938130 + 0.692978i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4510.82 + 2604.32i −0.240334 + 0.138757i −0.615330 0.788270i \(-0.710977\pi\)
0.374996 + 0.927026i \(0.377644\pi\)
\(138\) 0 0
\(139\) 21006.6i 1.08724i 0.839331 + 0.543620i \(0.182947\pi\)
−0.839331 + 0.543620i \(0.817053\pi\)
\(140\) 0 0
\(141\) −19261.8 −0.968854
\(142\) 0 0
\(143\) 8173.39 + 14156.7i 0.399696 + 0.692295i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −6540.80 21267.9i −0.302688 0.984216i
\(148\) 0 0
\(149\) −12533.4 + 21708.4i −0.564540 + 0.977812i 0.432552 + 0.901609i \(0.357613\pi\)
−0.997092 + 0.0762034i \(0.975720\pi\)
\(150\) 0 0
\(151\) −13334.0 23095.2i −0.584799 1.01290i −0.994900 0.100862i \(-0.967840\pi\)
0.410102 0.912040i \(-0.365493\pi\)
\(152\) 0 0
\(153\) 1420.85 0.0606967
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −19581.8 33916.7i −0.794426 1.37599i −0.923203 0.384312i \(-0.874439\pi\)
0.128777 0.991674i \(-0.458895\pi\)
\(158\) 0 0
\(159\) −19097.3 11025.8i −0.755402 0.436131i
\(160\) 0 0
\(161\) 32919.9 + 24317.3i 1.27001 + 0.938130i
\(162\) 0 0
\(163\) 15056.6 + 8692.95i 0.566700 + 0.327184i 0.755830 0.654768i \(-0.227234\pi\)
−0.189131 + 0.981952i \(0.560567\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 58.5044 0.00209776 0.00104888 0.999999i \(-0.499666\pi\)
0.00104888 + 0.999999i \(0.499666\pi\)
\(168\) 0 0
\(169\) −11586.8 −0.405685
\(170\) 0 0
\(171\) −1781.00 + 1028.26i −0.0609076 + 0.0351650i
\(172\) 0 0
\(173\) 17586.4 30460.5i 0.587603 1.01776i −0.406942 0.913454i \(-0.633405\pi\)
0.994545 0.104305i \(-0.0332617\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −18428.6 10639.8i −0.588229 0.339614i
\(178\) 0 0
\(179\) 17397.5 + 30133.4i 0.542976 + 0.940462i 0.998731 + 0.0503571i \(0.0160359\pi\)
−0.455755 + 0.890105i \(0.650631\pi\)
\(180\) 0 0
\(181\) 49619.6i 1.51459i 0.653071 + 0.757296i \(0.273480\pi\)
−0.653071 + 0.757296i \(0.726520\pi\)
\(182\) 0 0
\(183\) 25392.5i 0.758234i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −18249.4 + 31608.8i −0.521873 + 0.903910i
\(188\) 0 0
\(189\) −34345.3 3884.34i −0.961487 0.108741i
\(190\) 0 0
\(191\) −17409.5 + 30154.1i −0.477221 + 0.826571i −0.999659 0.0261063i \(-0.991689\pi\)
0.522438 + 0.852677i \(0.325022\pi\)
\(192\) 0 0
\(193\) −8926.21 + 5153.55i −0.239636 + 0.138354i −0.615010 0.788520i \(-0.710848\pi\)
0.375373 + 0.926874i \(0.377515\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 19115.5i 0.492554i −0.969200 0.246277i \(-0.920793\pi\)
0.969200 0.246277i \(-0.0792072\pi\)
\(198\) 0 0
\(199\) 25836.3 14916.6i 0.652415 0.376672i −0.136966 0.990576i \(-0.543735\pi\)
0.789381 + 0.613904i \(0.210402\pi\)
\(200\) 0 0
\(201\) −15180.4 8764.43i −0.375744 0.216936i
\(202\) 0 0
\(203\) −33586.0 3798.46i −0.815016 0.0921756i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −3533.10 + 2039.84i −0.0824547 + 0.0476052i
\(208\) 0 0
\(209\) 52827.8i 1.20940i
\(210\) 0 0
\(211\) −77248.3 −1.73510 −0.867549 0.497352i \(-0.834306\pi\)
−0.867549 + 0.497352i \(0.834306\pi\)
\(212\) 0 0
\(213\) 37548.5 + 65035.9i 0.827624 + 1.43349i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 8044.41 3505.73i 0.170834 0.0744491i
\(218\) 0 0
\(219\) 4449.08 7706.04i 0.0927646 0.160673i
\(220\) 0 0
\(221\) 18949.8 + 32822.1i 0.387991 + 0.672019i
\(222\) 0 0
\(223\) −45901.0 −0.923022 −0.461511 0.887135i \(-0.652692\pi\)
−0.461511 + 0.887135i \(0.652692\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −43542.8 75418.4i −0.845016 1.46361i −0.885607 0.464435i \(-0.846257\pi\)
0.0405908 0.999176i \(-0.487076\pi\)
\(228\) 0 0
\(229\) 81318.7 + 46949.3i 1.55067 + 0.895279i 0.998087 + 0.0618210i \(0.0196908\pi\)
0.552582 + 0.833458i \(0.313643\pi\)
\(230\) 0 0
\(231\) −33852.6 + 45828.4i −0.634406 + 0.858838i
\(232\) 0 0
\(233\) −28528.0 16470.7i −0.525484 0.303388i 0.213691 0.976901i \(-0.431451\pi\)
−0.739176 + 0.673513i \(0.764785\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 77648.9 1.38242
\(238\) 0 0
\(239\) −4707.47 −0.0824122 −0.0412061 0.999151i \(-0.513120\pi\)
−0.0412061 + 0.999151i \(0.513120\pi\)
\(240\) 0 0
\(241\) 2641.95 1525.33i 0.0454873 0.0262621i −0.477084 0.878858i \(-0.658306\pi\)
0.522571 + 0.852596i \(0.324973\pi\)
\(242\) 0 0
\(243\) 3555.94 6159.06i 0.0602201 0.104304i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −47506.3 27427.8i −0.778677 0.449569i
\(248\) 0 0
\(249\) 33971.1 + 58839.8i 0.547913 + 0.949013i
\(250\) 0 0
\(251\) 48062.2i 0.762879i −0.924394 0.381440i \(-0.875428\pi\)
0.924394 0.381440i \(-0.124572\pi\)
\(252\) 0 0
\(253\) 104798.i 1.63725i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 49950.2 86516.2i 0.756259 1.30988i −0.188487 0.982076i \(-0.560358\pi\)
0.944746 0.327803i \(-0.106308\pi\)
\(258\) 0 0
\(259\) −93571.2 69119.2i −1.39490 1.03038i
\(260\) 0 0
\(261\) 1684.61 2917.83i 0.0247297 0.0428331i
\(262\) 0 0
\(263\) −71495.8 + 41278.1i −1.03364 + 0.596772i −0.918025 0.396522i \(-0.870217\pi\)
−0.115614 + 0.993294i \(0.536884\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 18085.1i 0.253688i
\(268\) 0 0
\(269\) 110358. 63715.1i 1.52510 0.880517i 0.525542 0.850768i \(-0.323863\pi\)
0.999557 0.0297491i \(-0.00947082\pi\)
\(270\) 0 0
\(271\) −6655.65 3842.64i −0.0906258 0.0523228i 0.454002 0.891001i \(-0.349996\pi\)
−0.544628 + 0.838678i \(0.683329\pi\)
\(272\) 0 0
\(273\) 23636.0 + 54236.2i 0.317138 + 0.727720i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −65548.3 + 37844.3i −0.854283 + 0.493221i −0.862094 0.506749i \(-0.830847\pi\)
0.00781064 + 0.999969i \(0.497514\pi\)
\(278\) 0 0
\(279\) 874.711i 0.0112371i
\(280\) 0 0
\(281\) −6610.49 −0.0837184 −0.0418592 0.999124i \(-0.513328\pi\)
−0.0418592 + 0.999124i \(0.513328\pi\)
\(282\) 0 0
\(283\) −12069.9 20905.8i −0.150707 0.261032i 0.780781 0.624805i \(-0.214822\pi\)
−0.931487 + 0.363773i \(0.881488\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −49.3052 + 435.956i −0.000598589 + 0.00529272i
\(288\) 0 0
\(289\) −550.299 + 953.146i −0.00658875 + 0.0114120i
\(290\) 0 0
\(291\) 21700.1 + 37585.7i 0.256257 + 0.443851i
\(292\) 0 0
\(293\) −37778.7 −0.440060 −0.220030 0.975493i \(-0.570616\pi\)
−0.220030 + 0.975493i \(0.570616\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 44252.5 + 76647.7i 0.501678 + 0.868932i
\(298\) 0 0
\(299\) −94241.7 54410.5i −1.05415 0.608612i
\(300\) 0 0
\(301\) 18816.0 166371.i 0.207680 1.83630i
\(302\) 0 0
\(303\) 100458. + 57999.2i 1.09420 + 0.631738i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 10595.0 0.112415 0.0562075 0.998419i \(-0.482099\pi\)
0.0562075 + 0.998419i \(0.482099\pi\)
\(308\) 0 0
\(309\) 42289.4 0.442910
\(310\) 0 0
\(311\) 79569.5 45939.5i 0.822670 0.474969i −0.0286661 0.999589i \(-0.509126\pi\)
0.851336 + 0.524620i \(0.175793\pi\)
\(312\) 0 0
\(313\) 44654.7 77344.2i 0.455804 0.789476i −0.542930 0.839778i \(-0.682685\pi\)
0.998734 + 0.0503017i \(0.0160183\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7811.08 4509.73i −0.0777307 0.0448779i 0.460631 0.887592i \(-0.347623\pi\)
−0.538362 + 0.842714i \(0.680957\pi\)
\(318\) 0 0
\(319\) 43274.2 + 74953.1i 0.425253 + 0.736560i
\(320\) 0 0
\(321\) 161233.i 1.56475i
\(322\) 0 0
\(323\) 122480.i 1.17398i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 35822.5 62046.4i 0.335012 0.580258i
\(328\) 0 0
\(329\) 60511.3 81918.1i 0.559042 0.756813i
\(330\) 0 0
\(331\) 64303.7 111377.i 0.586922 1.01658i −0.407711 0.913111i \(-0.633673\pi\)
0.994633 0.103467i \(-0.0329937\pi\)
\(332\) 0 0
\(333\) 10042.5 5798.01i 0.0905631 0.0522866i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 53861.9i 0.474266i 0.971477 + 0.237133i \(0.0762078\pi\)
−0.971477 + 0.237133i \(0.923792\pi\)
\(338\) 0 0
\(339\) 25111.2 14498.0i 0.218509 0.126156i
\(340\) 0 0
\(341\) −19459.2 11234.8i −0.167346 0.0966174i
\(342\) 0 0
\(343\) 110998. + 38996.4i 0.943468 + 0.331464i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 16366.2 9449.06i 0.135922 0.0784747i −0.430497 0.902592i \(-0.641662\pi\)
0.566419 + 0.824117i \(0.308328\pi\)
\(348\) 0 0
\(349\) 195493.i 1.60502i 0.596639 + 0.802510i \(0.296502\pi\)
−0.596639 + 0.802510i \(0.703498\pi\)
\(350\) 0 0
\(351\) 91902.2 0.745954
\(352\) 0 0
\(353\) 71584.3 + 123988.i 0.574471 + 0.995013i 0.996099 + 0.0882441i \(0.0281255\pi\)
−0.421628 + 0.906769i \(0.638541\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −78486.5 + 106252.i −0.615827 + 0.833685i
\(358\) 0 0
\(359\) −107830. + 186767.i −0.836663 + 1.44914i 0.0560070 + 0.998430i \(0.482163\pi\)
−0.892670 + 0.450712i \(0.851170\pi\)
\(360\) 0 0
\(361\) 23477.7 + 40664.7i 0.180153 + 0.312035i
\(362\) 0 0
\(363\) 10208.3 0.0774714
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 79526.3 + 137744.i 0.590444 + 1.02268i 0.994173 + 0.107800i \(0.0343806\pi\)
−0.403729 + 0.914879i \(0.632286\pi\)
\(368\) 0 0
\(369\) −37.8743 21.8667i −0.000278158 0.000160595i
\(370\) 0 0
\(371\) 106886. 46580.8i 0.776558 0.338422i
\(372\) 0 0
\(373\) −137806. 79562.3i −0.990490 0.571860i −0.0850696 0.996375i \(-0.527111\pi\)
−0.905421 + 0.424515i \(0.860445\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 89870.4 0.632316
\(378\) 0 0
\(379\) −217562. −1.51462 −0.757311 0.653055i \(-0.773487\pi\)
−0.757311 + 0.653055i \(0.773487\pi\)
\(380\) 0 0
\(381\) 181156. 104590.i 1.24797 0.720513i
\(382\) 0 0
\(383\) −12753.6 + 22090.0i −0.0869434 + 0.150590i −0.906218 0.422811i \(-0.861043\pi\)
0.819274 + 0.573402i \(0.194377\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 14453.7 + 8344.84i 0.0965066 + 0.0557181i
\(388\) 0 0
\(389\) −32008.0 55439.5i −0.211524 0.366370i 0.740668 0.671872i \(-0.234509\pi\)
−0.952192 + 0.305501i \(0.901176\pi\)
\(390\) 0 0
\(391\) 242973.i 1.58930i
\(392\) 0 0
\(393\) 161508.i 1.04571i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −73037.2 + 126504.i −0.463408 + 0.802646i −0.999128 0.0417498i \(-0.986707\pi\)
0.535720 + 0.844395i \(0.320040\pi\)
\(398\) 0 0
\(399\) 21486.7 189985.i 0.134966 1.19336i
\(400\) 0 0
\(401\) 81104.6 140477.i 0.504379 0.873609i −0.495609 0.868546i \(-0.665055\pi\)
0.999987 0.00506331i \(-0.00161171\pi\)
\(402\) 0 0
\(403\) −20206.1 + 11666.0i −0.124415 + 0.0718310i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 297878.i 1.79825i
\(408\) 0 0
\(409\) 130323. 75242.3i 0.779069 0.449796i −0.0570313 0.998372i \(-0.518163\pi\)
0.836100 + 0.548577i \(0.184830\pi\)
\(410\) 0 0
\(411\) 41803.5 + 24135.3i 0.247474 + 0.142879i
\(412\) 0 0
\(413\) 103144. 44949.7i 0.604703 0.263528i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 168594. 97338.0i 0.969551 0.559771i
\(418\) 0 0
\(419\) 179241.i 1.02096i −0.859889 0.510482i \(-0.829467\pi\)
0.859889 0.510482i \(-0.170533\pi\)
\(420\) 0 0
\(421\) −124884. −0.704600 −0.352300 0.935887i \(-0.614600\pi\)
−0.352300 + 0.935887i \(0.614600\pi\)
\(422\) 0 0
\(423\) 5075.95 + 8791.80i 0.0283685 + 0.0491357i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 107991. + 79771.1i 0.592289 + 0.437512i
\(428\) 0 0
\(429\) 75746.0 131196.i 0.411571 0.712862i
\(430\) 0 0
\(431\) −82455.3 142817.i −0.443878 0.768820i 0.554095 0.832454i \(-0.313064\pi\)
−0.997973 + 0.0636334i \(0.979731\pi\)
\(432\) 0 0
\(433\) −137151. −0.731513 −0.365756 0.930711i \(-0.619190\pi\)
−0.365756 + 0.930711i \(0.619190\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 175838. + 304561.i 0.920768 + 1.59482i
\(438\) 0 0
\(439\) 13345.3 + 7704.93i 0.0692469 + 0.0399797i 0.534224 0.845343i \(-0.320604\pi\)
−0.464977 + 0.885323i \(0.653937\pi\)
\(440\) 0 0
\(441\) −7983.81 + 8590.08i −0.0410519 + 0.0441692i
\(442\) 0 0
\(443\) −194639. 112375.i −0.991794 0.572612i −0.0859837 0.996297i \(-0.527403\pi\)
−0.905810 + 0.423684i \(0.860737\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 232303. 1.16262
\(448\) 0 0
\(449\) −94012.1 −0.466328 −0.233164 0.972437i \(-0.574908\pi\)
−0.233164 + 0.972437i \(0.574908\pi\)
\(450\) 0 0
\(451\) 972.914 561.712i 0.00478323 0.00276160i
\(452\) 0 0
\(453\) −123571. + 214032.i −0.602173 + 1.04299i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 116215. + 67096.9i 0.556455 + 0.321270i 0.751722 0.659481i \(-0.229224\pi\)
−0.195266 + 0.980750i \(0.562557\pi\)
\(458\) 0 0
\(459\) 102599. + 177706.i 0.486986 + 0.843484i
\(460\) 0 0
\(461\) 159256.i 0.749365i −0.927153 0.374683i \(-0.877752\pi\)
0.927153 0.374683i \(-0.122248\pi\)
\(462\) 0 0
\(463\) 70003.7i 0.326557i −0.986580 0.163279i \(-0.947793\pi\)
0.986580 0.163279i \(-0.0522069\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 13070.1 22638.0i 0.0599300 0.103802i −0.834504 0.551002i \(-0.814246\pi\)
0.894434 + 0.447200i \(0.147579\pi\)
\(468\) 0 0
\(469\) 84963.8 37027.0i 0.386268 0.168334i
\(470\) 0 0
\(471\) −181472. + 314319.i −0.818028 + 1.41687i
\(472\) 0 0
\(473\) −371286. + 214362.i −1.65953 + 0.958133i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 11622.3i 0.0510805i
\(478\) 0 0
\(479\) −177431. + 102440.i −0.773321 + 0.446477i −0.834058 0.551677i \(-0.813988\pi\)
0.0607373 + 0.998154i \(0.480655\pi\)
\(480\) 0 0
\(481\) 267872. + 154656.i 1.15781 + 0.668462i
\(482\) 0 0
\(483\) 42624.7 376887.i 0.182712 1.61554i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 130653. 75432.7i 0.550887 0.318055i −0.198593 0.980082i \(-0.563637\pi\)
0.749480 + 0.662027i \(0.230304\pi\)
\(488\) 0 0
\(489\) 161122.i 0.673809i
\(490\) 0 0
\(491\) 302409. 1.25439 0.627194 0.778863i \(-0.284203\pi\)
0.627194 + 0.778863i \(0.284203\pi\)
\(492\) 0 0
\(493\) 100330. + 173777.i 0.412799 + 0.714989i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −394549. 44622.3i −1.59731 0.180650i
\(498\) 0 0
\(499\) 233347. 404168.i 0.937131 1.62316i 0.166341 0.986068i \(-0.446805\pi\)
0.770789 0.637090i \(-0.219862\pi\)
\(500\) 0 0
\(501\) −271.091 469.544i −0.00108004 0.00187069i
\(502\) 0 0
\(503\) 476574. 1.88362 0.941812 0.336140i \(-0.109122\pi\)
0.941812 + 0.336140i \(0.109122\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 53689.5 + 92992.9i 0.208869 + 0.361771i
\(508\) 0 0
\(509\) 375715. + 216919.i 1.45018 + 0.837264i 0.998491 0.0549101i \(-0.0174872\pi\)
0.451692 + 0.892174i \(0.350821\pi\)
\(510\) 0 0
\(511\) 18796.0 + 43130.1i 0.0719820 + 0.165173i
\(512\) 0 0
\(513\) −257210. 148500.i −0.977355 0.564276i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −260781. −0.975654
\(518\) 0 0
\(519\) −325959. −1.21012
\(520\) 0 0
\(521\) 163547. 94423.9i 0.602514 0.347862i −0.167516 0.985869i \(-0.553575\pi\)
0.770030 + 0.638008i \(0.220241\pi\)
\(522\) 0 0
\(523\) 191634. 331920.i 0.700598 1.21347i −0.267659 0.963514i \(-0.586250\pi\)
0.968257 0.249957i \(-0.0804166\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −45115.7 26047.6i −0.162445 0.0937877i
\(528\) 0 0
\(529\) 208903. + 361830.i 0.746504 + 1.29298i
\(530\) 0 0
\(531\) 11215.3i 0.0397762i
\(532\) 0 0
\(533\) 1166.54i 0.00410627i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 161229. 279257.i 0.559107 0.968403i
\(538\) 0 0
\(539\) −88554.5 287942.i −0.304813 0.991123i
\(540\) 0 0
\(541\) 122882. 212838.i 0.419850 0.727202i −0.576074 0.817398i \(-0.695416\pi\)
0.995924 + 0.0901957i \(0.0287492\pi\)
\(542\) 0 0
\(543\) 398236. 229922.i 1.35064 0.779795i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 426220.i 1.42449i −0.701931 0.712245i \(-0.747678\pi\)
0.701931 0.712245i \(-0.252322\pi\)
\(548\) 0 0
\(549\) −11590.1 + 6691.54i −0.0384541 + 0.0222015i
\(550\) 0 0
\(551\) −251523. 145217.i −0.828466 0.478315i
\(552\) 0 0
\(553\) −243936. + 330232.i −0.797674 + 1.07986i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 394342. 227674.i 1.27105 0.733841i 0.295865 0.955230i \(-0.404392\pi\)
0.975186 + 0.221389i \(0.0710589\pi\)
\(558\) 0 0
\(559\) 445180.i 1.42466i
\(560\) 0 0
\(561\) 338248. 1.07475
\(562\) 0 0
\(563\) −2570.04 4451.44i −0.00810817 0.0140438i 0.861943 0.507005i \(-0.169248\pi\)
−0.870051 + 0.492962i \(0.835914\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 135715. + 311419.i 0.422146 + 0.968676i
\(568\) 0 0
\(569\) 229289. 397141.i 0.708206 1.22665i −0.257317 0.966327i \(-0.582838\pi\)
0.965522 0.260321i \(-0.0838284\pi\)
\(570\) 0 0
\(571\) 99846.4 + 172939.i 0.306239 + 0.530421i 0.977536 0.210767i \(-0.0675961\pi\)
−0.671298 + 0.741188i \(0.734263\pi\)
\(572\) 0 0
\(573\) 322681. 0.982797
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −209785. 363358.i −0.630119 1.09140i −0.987527 0.157450i \(-0.949673\pi\)
0.357408 0.933948i \(-0.383661\pi\)
\(578\) 0 0
\(579\) 82722.6 + 47759.9i 0.246756 + 0.142464i
\(580\) 0 0
\(581\) −356960. 40371.0i −1.05747 0.119596i
\(582\) 0 0
\(583\) −258555. 149277.i −0.760703 0.439192i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −536841. −1.55801 −0.779004 0.627019i \(-0.784275\pi\)
−0.779004 + 0.627019i \(0.784275\pi\)
\(588\) 0 0
\(589\) 75401.9 0.217346
\(590\) 0 0
\(591\) −153417. + 88575.4i −0.439237 + 0.253593i
\(592\) 0 0
\(593\) 171352. 296791.i 0.487282 0.843998i −0.512611 0.858621i \(-0.671322\pi\)
0.999893 + 0.0146235i \(0.00465498\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −239435. 138238.i −0.671797 0.387862i
\(598\) 0 0
\(599\) −234677. 406472.i −0.654059 1.13286i −0.982129 0.188210i \(-0.939731\pi\)
0.328070 0.944653i \(-0.393602\pi\)
\(600\) 0 0
\(601\) 239086.i 0.661919i −0.943645 0.330959i \(-0.892628\pi\)
0.943645 0.330959i \(-0.107372\pi\)
\(602\) 0 0
\(603\) 9238.56i 0.0254080i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 199526. 345589.i 0.541529 0.937955i −0.457288 0.889319i \(-0.651179\pi\)
0.998817 0.0486365i \(-0.0154876\pi\)
\(608\) 0 0
\(609\) 125141. + 287155.i 0.337416 + 0.774251i
\(610\) 0 0
\(611\) −135396. + 234512.i −0.362679 + 0.628178i
\(612\) 0 0
\(613\) −385895. + 222797.i −1.02695 + 0.592909i −0.916109 0.400930i \(-0.868687\pi\)
−0.110839 + 0.993838i \(0.535354\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 211730.i 0.556176i 0.960556 + 0.278088i \(0.0897007\pi\)
−0.960556 + 0.278088i \(0.910299\pi\)
\(618\) 0 0
\(619\) 140215. 80953.0i 0.365942 0.211277i −0.305742 0.952114i \(-0.598905\pi\)
0.671684 + 0.740838i \(0.265571\pi\)
\(620\) 0 0
\(621\) −510245. 294590.i −1.32311 0.763898i
\(622\) 0 0
\(623\) −76914.0 56814.8i −0.198166 0.146381i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −423985. + 244788.i −1.07849 + 0.622666i
\(628\) 0 0
\(629\) 690625.i 1.74558i
\(630\) 0 0
\(631\) −169560. −0.425858 −0.212929 0.977068i \(-0.568300\pi\)
−0.212929 + 0.977068i \(0.568300\pi\)
\(632\) 0 0
\(633\) 357945. + 619978.i 0.893323 + 1.54728i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −304913. 69863.0i −0.751446 0.172174i
\(638\) 0 0
\(639\) 19789.9 34277.1i 0.0484665 0.0839464i
\(640\) 0 0
\(641\) 138209. + 239386.i 0.336373 + 0.582615i 0.983748 0.179557i \(-0.0574664\pi\)
−0.647375 + 0.762172i \(0.724133\pi\)
\(642\) 0 0
\(643\) −585755. −1.41675 −0.708376 0.705835i \(-0.750572\pi\)
−0.708376 + 0.705835i \(0.750572\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 290520. + 503195.i 0.694012 + 1.20206i 0.970513 + 0.241051i \(0.0774920\pi\)
−0.276500 + 0.961014i \(0.589175\pi\)
\(648\) 0 0
\(649\) −249501. 144050.i −0.592357 0.341997i
\(650\) 0 0
\(651\) −65411.6 48318.2i −0.154345 0.114012i
\(652\) 0 0
\(653\) 394196. + 227589.i 0.924456 + 0.533735i 0.885054 0.465489i \(-0.154121\pi\)
0.0394018 + 0.999223i \(0.487455\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −4689.77 −0.0108648
\(658\) 0 0
\(659\) −516645. −1.18965 −0.594827 0.803853i \(-0.702780\pi\)
−0.594827 + 0.803853i \(0.702780\pi\)
\(660\) 0 0
\(661\) 26623.2 15370.9i 0.0609338 0.0351801i −0.469224 0.883079i \(-0.655466\pi\)
0.530157 + 0.847899i \(0.322133\pi\)
\(662\) 0 0
\(663\) 175615. 304175.i 0.399517 0.691984i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −498965. 288078.i −1.12155 0.647527i
\(668\) 0 0
\(669\) 212691. + 368391.i 0.475222 + 0.823109i
\(670\) 0 0
\(671\) 343784.i 0.763556i
\(672\) 0 0
\(673\) 652774.i 1.44123i 0.693336 + 0.720614i \(0.256140\pi\)
−0.693336 + 0.720614i \(0.743860\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 212401. 367890.i 0.463425 0.802676i −0.535703 0.844406i \(-0.679954\pi\)
0.999129 + 0.0417297i \(0.0132868\pi\)
\(678\) 0 0
\(679\) −228019. 25788.2i −0.494575 0.0559348i
\(680\) 0 0
\(681\) −403528. + 698931.i −0.870121 + 1.50709i
\(682\) 0 0
\(683\) 381847. 220459.i 0.818555 0.472593i −0.0313629 0.999508i \(-0.509985\pi\)
0.849918 + 0.526915i \(0.176651\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 870195.i 1.84375i
\(688\) 0 0
\(689\) −268479. + 155006.i −0.565551 + 0.326521i
\(690\) 0 0
\(691\) 307462. + 177513.i 0.643925 + 0.371770i 0.786125 0.618068i \(-0.212084\pi\)
−0.142200 + 0.989838i \(0.545418\pi\)
\(692\) 0 0
\(693\) 29838.8 + 3374.67i 0.0621319 + 0.00702692i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2255.68 1302.32i 0.00464314 0.00268072i
\(698\) 0 0
\(699\) 305280.i 0.624804i
\(700\) 0 0
\(701\) 124187. 0.252720 0.126360 0.991984i \(-0.459671\pi\)
0.126360 + 0.991984i \(0.459671\pi\)
\(702\) 0 0
\(703\) −499801. 865681.i −1.01131 1.75165i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −562254. + 245029.i −1.12485 + 0.490206i
\(708\) 0 0
\(709\) 258615. 447935.i 0.514472 0.891092i −0.485387 0.874300i \(-0.661321\pi\)
0.999859 0.0167927i \(-0.00534553\pi\)
\(710\) 0 0
\(711\) −20462.4 35441.9i −0.0404778 0.0701096i
\(712\) 0 0
\(713\) 149580. 0.294236
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 21813.0 + 37781.1i 0.0424303 + 0.0734914i
\(718\) 0 0
\(719\) 191605. + 110623.i 0.370637 + 0.213987i 0.673737 0.738971i \(-0.264688\pi\)
−0.303100 + 0.952959i \(0.598022\pi\)
\(720\) 0 0
\(721\) −132853. + 179852.i −0.255565 + 0.345975i
\(722\) 0 0
\(723\) −24483.9 14135.8i −0.0468387 0.0270423i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 689793. 1.30512 0.652559 0.757738i \(-0.273695\pi\)
0.652559 + 0.757738i \(0.273695\pi\)
\(728\) 0 0
\(729\) 495646. 0.932646
\(730\) 0 0
\(731\) −860819. + 496994.i −1.61093 + 0.930072i
\(732\) 0 0
\(733\) −347322. + 601579.i −0.646434 + 1.11966i 0.337534 + 0.941313i \(0.390407\pi\)
−0.983968 + 0.178344i \(0.942926\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −205525. 118660.i −0.378381 0.218459i
\(738\) 0 0
\(739\) −298417. 516873.i −0.546430 0.946445i −0.998515 0.0544702i \(-0.982653\pi\)
0.452085 0.891975i \(-0.350680\pi\)
\(740\) 0 0
\(741\) 508367.i 0.925851i
\(742\) 0 0
\(743\) 246075.i 0.445749i 0.974847 + 0.222874i \(0.0715440\pi\)
−0.974847 + 0.222874i \(0.928456\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 17904.4 31011.4i 0.0320863 0.0555751i
\(748\) 0 0
\(749\) −685707. 506518.i −1.22229 0.902883i
\(750\) 0 0
\(751\) −300133. + 519845.i −0.532149 + 0.921709i 0.467147 + 0.884180i \(0.345282\pi\)
−0.999296 + 0.0375292i \(0.988051\pi\)
\(752\) 0 0
\(753\) −385737. + 222705.i −0.680301 + 0.392772i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 526244.i 0.918323i 0.888353 + 0.459161i \(0.151850\pi\)
−0.888353 + 0.459161i \(0.848150\pi\)
\(758\) 0 0
\(759\) −841090. + 485604.i −1.46002 + 0.842943i
\(760\) 0 0
\(761\) −49134.9 28368.1i −0.0848440 0.0489847i 0.456978 0.889478i \(-0.348932\pi\)
−0.541822 + 0.840493i \(0.682265\pi\)
\(762\) 0 0
\(763\) 151339. + 347269.i 0.259957 + 0.596509i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −259078. + 149579.i −0.440392 + 0.254261i
\(768\) 0 0
\(769\) 490999.i 0.830286i 0.909756 + 0.415143i \(0.136268\pi\)
−0.909756 + 0.415143i \(0.863732\pi\)
\(770\) 0 0
\(771\) −925814. −1.55745
\(772\) 0 0
\(773\) −226678. 392618.i −0.379359 0.657070i 0.611610 0.791160i \(-0.290522\pi\)
−0.990969 + 0.134090i \(0.957189\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −121156. + 1.07126e6i −0.200679 + 1.77440i
\(778\) 0 0
\(779\) −1884.96 + 3264.84i −0.00310618 + 0.00538007i
\(780\) 0 0
\(781\) 508361. + 880508.i 0.833433 + 1.44355i
\(782\) 0 0
\(783\) 486578. 0.793650
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 504381. + 873614.i 0.814347 + 1.41049i 0.909796 + 0.415056i \(0.136238\pi\)
−0.0954489 + 0.995434i \(0.530429\pi\)
\(788\) 0 0
\(789\) 662579. + 382540.i 1.06435 + 0.614501i
\(790\) 0 0
\(791\) −17229.3 + 152341.i −0.0275368 + 0.243480i
\(792\) 0 0
\(793\) −309154. 178490.i −0.491618 0.283836i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 594164. 0.935384 0.467692 0.883892i \(-0.345086\pi\)
0.467692 + 0.883892i \(0.345086\pi\)
\(798\) 0 0
\(799\) −604617. −0.947080
\(800\) 0 0
\(801\) 8254.73 4765.87i 0.0128658 0.00742809i
\(802\) 0 0
\(803\) 60235.3 104331.i 0.0934157 0.161801i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.02273e6 590472.i −1.57041 0.906676i
\(808\) 0 0
\(809\) −474663. 822141.i −0.725251 1.25617i −0.958870 0.283844i \(-0.908390\pi\)
0.233619 0.972328i \(-0.424943\pi\)
\(810\) 0 0
\(811\) 920610.i 1.39970i 0.714291 + 0.699849i \(0.246749\pi\)
−0.714291 + 0.699849i \(0.753251\pi\)
\(812\) 0 0
\(813\) 71222.4i 0.107755i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 719343. 1.24594e6i 1.07769 1.86661i
\(818\) 0 0
\(819\) 18526.8 25080.9i 0.0276205 0.0373917i
\(820\) 0 0
\(821\) 267658. 463597.i 0.397094 0.687787i −0.596272 0.802783i \(-0.703352\pi\)
0.993366 + 0.114995i \(0.0366853\pi\)
\(822\) 0 0
\(823\) 389535. 224898.i 0.575105 0.332037i −0.184081 0.982911i \(-0.558931\pi\)
0.759186 + 0.650874i \(0.225597\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 166361.i 0.243243i −0.992577 0.121622i \(-0.961191\pi\)
0.992577 0.121622i \(-0.0388095\pi\)
\(828\) 0 0
\(829\) −905482. + 522780.i −1.31756 + 0.760694i −0.983336 0.181799i \(-0.941808\pi\)
−0.334225 + 0.942493i \(0.608475\pi\)
\(830\) 0 0
\(831\) 607461. + 350718.i 0.879663 + 0.507874i
\(832\) 0 0
\(833\) −205312. 667588.i −0.295886 0.962096i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −109400. + 63162.3i −0.156159 + 0.0901585i
\(838\) 0 0
\(839\) 933965.i 1.32680i −0.748263 0.663402i \(-0.769112\pi\)
0.748263 0.663402i \(-0.230888\pi\)
\(840\) 0 0
\(841\) −231460. −0.327253
\(842\) 0 0
\(843\) 30631.0 + 53054.4i 0.0431028 + 0.0746563i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −32069.7 + 43414.8i −0.0447021 + 0.0605162i
\(848\) 0 0
\(849\) −111857. + 193742.i −0.155184 + 0.268787i
\(850\) 0 0
\(851\) −991492. 1.71731e6i −1.36908 2.37132i
\(852\) 0 0
\(853\) 471325. 0.647773 0.323886 0.946096i \(-0.395010\pi\)
0.323886 + 0.946096i \(0.395010\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −516160. 894015.i −0.702785 1.21726i −0.967485 0.252929i \(-0.918606\pi\)
0.264700 0.964331i \(-0.414727\pi\)
\(858\) 0 0
\(859\) 166917. + 96369.5i 0.226211 + 0.130603i 0.608823 0.793306i \(-0.291642\pi\)
−0.382612 + 0.923909i \(0.624975\pi\)
\(860\) 0 0
\(861\) 3727.35 1624.37i 0.00502799 0.00219119i
\(862\) 0 0
\(863\) 455079. + 262740.i 0.611034 + 0.352781i 0.773370 0.633955i \(-0.218569\pi\)
−0.162336 + 0.986736i \(0.551903\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 10199.7 0.0135690
\(868\) 0 0
\(869\) 1.05127e6 1.39212
\(870\) 0 0
\(871\) −213414. + 123214.i −0.281311 + 0.162415i
\(872\) 0 0
\(873\) 11437.0 19809.5i 0.0150067 0.0259923i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −796209. 459691.i −1.03521 0.597678i −0.116736 0.993163i \(-0.537243\pi\)
−0.918472 + 0.395485i \(0.870577\pi\)
\(878\) 0 0
\(879\) 175055. + 303204.i 0.226567 + 0.392425i
\(880\) 0 0
\(881\) 307096.i 0.395660i 0.980236 + 0.197830i \(0.0633894\pi\)
−0.980236 + 0.197830i \(0.936611\pi\)
\(882\) 0 0
\(883\) 747006.i 0.958082i 0.877792 + 0.479041i \(0.159016\pi\)
−0.877792 + 0.479041i \(0.840984\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 203773. 352945.i 0.259000 0.448600i −0.706975 0.707239i \(-0.749941\pi\)
0.965974 + 0.258639i \(0.0832739\pi\)
\(888\) 0 0
\(889\) −124294. + 1.09901e6i −0.157271 + 1.39059i
\(890\) 0 0
\(891\) 434925. 753312.i 0.547847 0.948898i
\(892\) 0 0
\(893\) 757872. 437557.i 0.950370 0.548696i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1.00849e6i 1.25339i
\(898\) 0 0
\(899\) −106982. + 61765.9i −0.132370 + 0.0764239i
\(900\) 0 0
\(901\) −599454. 346095.i −0.738425 0.426330i
\(902\) 0 0
\(903\) −1.42244e6 + 619897.i −1.74445 + 0.760228i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 343360. 198239.i 0.417383 0.240976i −0.276574 0.960993i \(-0.589199\pi\)
0.693957 + 0.720016i \(0.255866\pi\)
\(908\) 0 0
\(909\) 61136.8i 0.0739903i
\(910\) 0 0
\(911\) 682934. 0.822890 0.411445 0.911434i \(-0.365024\pi\)
0.411445 + 0.911434i \(0.365024\pi\)
\(912\) 0 0
\(913\) 459929. + 796620.i 0.551758 + 0.955673i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −686877. 507382.i −0.816846 0.603388i
\(918\) 0 0
\(919\) −175122. + 303321.i −0.207353 + 0.359146i −0.950880 0.309560i \(-0.899818\pi\)
0.743527 + 0.668706i \(0.233152\pi\)
\(920\) 0 0
\(921\) −49094.0 85033.2i −0.0578774 0.100247i
\(922\) 0 0
\(923\) 1.05575e6 1.23924
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −11144.3 19302.5i −0.0129686 0.0224623i
\(928\) 0 0
\(929\) 1.34168e6 + 774617.i 1.55459 + 0.897544i 0.997758 + 0.0669199i \(0.0213172\pi\)
0.556833 + 0.830624i \(0.312016\pi\)
\(930\) 0 0
\(931\) 740483. + 688222.i 0.854310 + 0.794016i
\(932\) 0 0
\(933\) −737401. 425739.i −0.847111 0.489080i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −431939. −0.491975 −0.245988 0.969273i \(-0.579112\pi\)
−0.245988 + 0.969273i \(0.579112\pi\)
\(938\) 0 0
\(939\) −827664. −0.938692
\(940\) 0 0
\(941\) −560859. + 323812.i −0.633395 + 0.365691i −0.782066 0.623196i \(-0.785834\pi\)
0.148671 + 0.988887i \(0.452501\pi\)
\(942\) 0 0
\(943\) −3739.33 + 6476.71i −0.00420504 + 0.00728335i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.51615e6 875350.i −1.69061 0.976071i −0.954028 0.299718i \(-0.903107\pi\)
−0.736577 0.676353i \(-0.763559\pi\)
\(948\) 0 0
\(949\) −62547.3 108335.i −0.0694506 0.120292i
\(950\) 0 0
\(951\) 83586.8i 0.0924223i
\(952\) 0 0
\(953\) 1.11747e6i 1.23041i −0.788367 0.615206i \(-0.789073\pi\)
0.788367 0.615206i \(-0.210927\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 401039. 694619.i 0.437887 0.758443i
\(958\) 0 0
\(959\) −233971. + 101964.i −0.254405 + 0.110869i
\(960\) 0 0
\(961\) −445725. + 772018.i −0.482637 + 0.835951i
\(962\) 0 0
\(963\) 73592.9 42488.9i 0.0793567 0.0458166i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.24016e6i 1.32625i 0.748508 + 0.663126i \(0.230771\pi\)
−0.748508 + 0.663126i \(0.769229\pi\)
\(968\) 0 0
\(969\) −983001. + 567536.i −1.04690 + 0.604430i
\(970\) 0 0
\(971\) −429350. 247885.i −0.455379 0.262913i 0.254720 0.967015i \(-0.418017\pi\)
−0.710099 + 0.704101i \(0.751350\pi\)
\(972\) 0 0
\(973\) −115676. + 1.02280e6i −0.122184 + 1.08035i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −545099. + 314713.i −0.571066 + 0.329705i −0.757575 0.652748i \(-0.773616\pi\)
0.186509 + 0.982453i \(0.440283\pi\)
\(978\) 0 0
\(979\) 244851.i 0.255468i
\(980\) 0 0
\(981\) −37760.4 −0.0392373
\(982\) 0 0
\(983\) 117853. + 204127.i 0.121964 + 0.211248i 0.920542 0.390643i \(-0.127747\pi\)
−0.798578 + 0.601891i \(0.794414\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −937848. 106068.i −0.962716 0.108880i
\(988\) 0 0
\(989\) 1.42701e6 2.47166e6i 1.45893 2.52695i
\(990\) 0 0
\(991\) −651369. 1.12820e6i −0.663254 1.14879i −0.979756 0.200198i \(-0.935842\pi\)
0.316502 0.948592i \(-0.397492\pi\)
\(992\) 0 0
\(993\) −1.19185e6 −1.20872
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 881908. + 1.52751e6i 0.887224 + 1.53672i 0.843143 + 0.537689i \(0.180702\pi\)
0.0440803 + 0.999028i \(0.485964\pi\)
\(998\) 0 0
\(999\) 1.45032e6 + 837341.i 1.45322 + 0.839018i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.5.o.b.649.6 40
5.2 odd 4 140.5.r.a.61.4 20
5.3 odd 4 700.5.s.b.201.7 20
5.4 even 2 inner 700.5.o.b.649.15 40
7.3 odd 6 inner 700.5.o.b.549.15 40
35.2 odd 12 980.5.d.a.881.6 20
35.3 even 12 700.5.s.b.101.7 20
35.12 even 12 980.5.d.a.881.15 20
35.17 even 12 140.5.r.a.101.4 yes 20
35.24 odd 6 inner 700.5.o.b.549.6 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.5.r.a.61.4 20 5.2 odd 4
140.5.r.a.101.4 yes 20 35.17 even 12
700.5.o.b.549.6 40 35.24 odd 6 inner
700.5.o.b.549.15 40 7.3 odd 6 inner
700.5.o.b.649.6 40 1.1 even 1 trivial
700.5.o.b.649.15 40 5.4 even 2 inner
700.5.s.b.101.7 20 35.3 even 12
700.5.s.b.201.7 20 5.3 odd 4
980.5.d.a.881.6 20 35.2 odd 12
980.5.d.a.881.15 20 35.12 even 12