Properties

Label 2-140-1.1-c5-0-6
Degree $2$
Conductor $140$
Sign $1$
Analytic cond. $22.4537$
Root an. cond. $4.73853$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 24.5·3-s + 25·5-s + 49·7-s + 359.·9-s + 90.2·11-s − 14.4·13-s + 613.·15-s + 407.·17-s + 2.28e3·19-s + 1.20e3·21-s − 505.·23-s + 625·25-s + 2.85e3·27-s − 3.16e3·29-s − 6.23e3·31-s + 2.21e3·33-s + 1.22e3·35-s + 5.38e3·37-s − 354.·39-s + 1.17e4·41-s − 5.82e3·43-s + 8.98e3·45-s + 7.34e3·47-s + 2.40e3·49-s + 9.99e3·51-s + 1.49e4·53-s + 2.25e3·55-s + ⋯
L(s)  = 1  + 1.57·3-s + 0.447·5-s + 0.377·7-s + 1.47·9-s + 0.224·11-s − 0.0236·13-s + 0.704·15-s + 0.341·17-s + 1.45·19-s + 0.595·21-s − 0.199·23-s + 0.200·25-s + 0.754·27-s − 0.698·29-s − 1.16·31-s + 0.354·33-s + 0.169·35-s + 0.647·37-s − 0.0373·39-s + 1.09·41-s − 0.480·43-s + 0.661·45-s + 0.485·47-s + 0.142·49-s + 0.538·51-s + 0.732·53-s + 0.100·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(140\)    =    \(2^{2} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(22.4537\)
Root analytic conductor: \(4.73853\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 140,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.836120161\)
\(L(\frac12)\) \(\approx\) \(3.836120161\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 25T \)
7 \( 1 - 49T \)
good3 \( 1 - 24.5T + 243T^{2} \)
11 \( 1 - 90.2T + 1.61e5T^{2} \)
13 \( 1 + 14.4T + 3.71e5T^{2} \)
17 \( 1 - 407.T + 1.41e6T^{2} \)
19 \( 1 - 2.28e3T + 2.47e6T^{2} \)
23 \( 1 + 505.T + 6.43e6T^{2} \)
29 \( 1 + 3.16e3T + 2.05e7T^{2} \)
31 \( 1 + 6.23e3T + 2.86e7T^{2} \)
37 \( 1 - 5.38e3T + 6.93e7T^{2} \)
41 \( 1 - 1.17e4T + 1.15e8T^{2} \)
43 \( 1 + 5.82e3T + 1.47e8T^{2} \)
47 \( 1 - 7.34e3T + 2.29e8T^{2} \)
53 \( 1 - 1.49e4T + 4.18e8T^{2} \)
59 \( 1 + 4.71e4T + 7.14e8T^{2} \)
61 \( 1 + 4.28e3T + 8.44e8T^{2} \)
67 \( 1 - 4.88e4T + 1.35e9T^{2} \)
71 \( 1 - 5.85e4T + 1.80e9T^{2} \)
73 \( 1 + 1.59e3T + 2.07e9T^{2} \)
79 \( 1 + 7.91e4T + 3.07e9T^{2} \)
83 \( 1 + 7.14e4T + 3.93e9T^{2} \)
89 \( 1 + 7.71e4T + 5.58e9T^{2} \)
97 \( 1 - 1.15e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.49108653150524367768195427712, −11.15155187515066393564973953431, −9.757465862979467932520795011601, −9.180044296371370195865357031808, −8.054727619267592753293839216260, −7.22511552429934842807447086281, −5.52203918705780333620702924555, −3.92346835388940290120785466087, −2.74191624921347002391444778744, −1.47287247417362097021632997009, 1.47287247417362097021632997009, 2.74191624921347002391444778744, 3.92346835388940290120785466087, 5.52203918705780333620702924555, 7.22511552429934842807447086281, 8.054727619267592753293839216260, 9.180044296371370195865357031808, 9.757465862979467932520795011601, 11.15155187515066393564973953431, 12.49108653150524367768195427712

Graph of the $Z$-function along the critical line