Properties

Label 140.6.a.d
Level $140$
Weight $6$
Character orbit 140.a
Self dual yes
Analytic conductor $22.454$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [140,6,Mod(1,140)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(140, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("140.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 140 = 2^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 140.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.4537347738\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 499x - 210 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 2) q^{3} + 25 q^{5} + 49 q^{7} + (\beta_{2} + 5 \beta_1 + 94) q^{9} + ( - \beta_{2} + 11 \beta_1 - 5) q^{11} + ( - 2 \beta_{2} + 13 \beta_1 - 2) q^{13} + (25 \beta_1 + 50) q^{15} + ( - 2 \beta_{2} + 31 \beta_1 + 14) q^{17}+ \cdots + (116 \beta_{2} + 2342 \beta_1 - 38084) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{3} + 75 q^{5} + 147 q^{7} + 281 q^{9} - 14 q^{11} - 4 q^{13} + 150 q^{15} + 44 q^{17} + 2328 q^{19} + 294 q^{21} + 3676 q^{23} + 1875 q^{25} + 3726 q^{27} + 4092 q^{29} + 5888 q^{31} + 11318 q^{33}+ \cdots - 114368 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 499x - 210 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 333 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 333 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−22.1248
−0.420991
22.5458
0 −20.1248 0 25.0000 0 49.0000 0 162.009 0
1.2 0 1.57901 0 25.0000 0 49.0000 0 −240.507 0
1.3 0 24.5458 0 25.0000 0 49.0000 0 359.498 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 140.6.a.d 3
4.b odd 2 1 560.6.a.t 3
5.b even 2 1 700.6.a.i 3
5.c odd 4 2 700.6.e.g 6
7.b odd 2 1 980.6.a.h 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.6.a.d 3 1.a even 1 1 trivial
560.6.a.t 3 4.b odd 2 1
700.6.a.i 3 5.b even 2 1
700.6.e.g 6 5.c odd 4 2
980.6.a.h 3 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 6T_{3}^{2} - 487T_{3} + 780 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(140))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 6 T^{2} + \cdots + 780 \) Copy content Toggle raw display
$5$ \( (T - 25)^{3} \) Copy content Toggle raw display
$7$ \( (T - 49)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 14 T^{2} + \cdots + 12436740 \) Copy content Toggle raw display
$13$ \( T^{3} + 4 T^{2} + \cdots - 6140734 \) Copy content Toggle raw display
$17$ \( T^{3} - 44 T^{2} + \cdots + 279119070 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 11429521264 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 2083660704 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 17580868722 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 211802104832 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 47286923800 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 478579953600 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 750561676176 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 173657376144 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 743911257600 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 41176040028480 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 169955356480 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 15170685707520 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 113425504819200 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 11043630664360 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 274092525845520 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 40289422939200 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 305457269205600 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 41652594334882 \) Copy content Toggle raw display
show more
show less