L(s) = 1 | + (−0.866 − 0.5i)3-s + (0.866 + 2.5i)7-s + (−1 − 1.73i)9-s + (−1 + 1.73i)11-s + (3.46 + 2i)17-s + (−1 − 1.73i)19-s + (0.500 − 2.59i)21-s + (0.866 − 0.5i)23-s + 5i·27-s − 9·29-s + (−2 + 3.46i)31-s + (1.73 − 0.999i)33-s + (−3.46 + 2i)37-s + 41-s + 9i·43-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.288i)3-s + (0.327 + 0.944i)7-s + (−0.333 − 0.577i)9-s + (−0.301 + 0.522i)11-s + (0.840 + 0.485i)17-s + (−0.229 − 0.397i)19-s + (0.109 − 0.566i)21-s + (0.180 − 0.104i)23-s + 0.962i·27-s − 1.67·29-s + (−0.359 + 0.622i)31-s + (0.301 − 0.174i)33-s + (−0.569 + 0.328i)37-s + 0.156·41-s + 1.37i·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.208 - 0.978i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.208 - 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8438836370\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8438836370\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-0.866 - 2.5i)T \) |
good | 3 | \( 1 + (0.866 + 0.5i)T + (1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (1 - 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 13T^{2} \) |
| 17 | \( 1 + (-3.46 - 2i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1 + 1.73i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.866 + 0.5i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 9T + 29T^{2} \) |
| 31 | \( 1 + (2 - 3.46i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (3.46 - 2i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - T + 41T^{2} \) |
| 43 | \( 1 - 9iT - 43T^{2} \) |
| 47 | \( 1 + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-8.66 - 5i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (5 - 8.66i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.5 + 7.79i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.33 - 2.5i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 14T + 71T^{2} \) |
| 73 | \( 1 + (10.3 + 6i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-7 - 12.1i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 11iT - 83T^{2} \) |
| 89 | \( 1 + (7.5 + 12.9i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 18iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.638996396282050916486415693151, −9.048138778877038820856969586805, −8.183557032470932569577040534226, −7.33485504776220586487453957317, −6.41358048075850871332563902085, −5.63949061459481675727639200303, −5.02516477771015952698130739756, −3.73283270797228823878172899156, −2.62835528059228636525604196630, −1.41421674611134668641749669216,
0.37116713737588800641613554818, 1.94066432002736558143614523660, 3.35922544540925577761682698651, 4.22494646622992729183394093757, 5.31430870361603401102157181646, 5.73011305717528525436359989637, 7.02291128186673319704000025023, 7.69486275974375710735575818510, 8.412490122837720619156473862869, 9.483535054426076803971367886924