L(s) = 1 | + (−0.866 − 0.5i)3-s + (0.866 + 2.5i)7-s + (−1 − 1.73i)9-s + (−1 + 1.73i)11-s + (3.46 + 2i)17-s + (−1 − 1.73i)19-s + (0.500 − 2.59i)21-s + (0.866 − 0.5i)23-s + 5i·27-s − 9·29-s + (−2 + 3.46i)31-s + (1.73 − 0.999i)33-s + (−3.46 + 2i)37-s + 41-s + 9i·43-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.288i)3-s + (0.327 + 0.944i)7-s + (−0.333 − 0.577i)9-s + (−0.301 + 0.522i)11-s + (0.840 + 0.485i)17-s + (−0.229 − 0.397i)19-s + (0.109 − 0.566i)21-s + (0.180 − 0.104i)23-s + 0.962i·27-s − 1.67·29-s + (−0.359 + 0.622i)31-s + (0.301 − 0.174i)33-s + (−0.569 + 0.328i)37-s + 0.156·41-s + 1.37i·43-s + ⋯ |
Λ(s)=(=(1400s/2ΓC(s)L(s)(−0.208−0.978i)Λ(2−s)
Λ(s)=(=(1400s/2ΓC(s+1/2)L(s)(−0.208−0.978i)Λ(1−s)
Degree: |
2 |
Conductor: |
1400
= 23⋅52⋅7
|
Sign: |
−0.208−0.978i
|
Analytic conductor: |
11.1790 |
Root analytic conductor: |
3.34350 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1400(249,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1400, ( :1/2), −0.208−0.978i)
|
Particular Values
L(1) |
≈ |
0.8438836370 |
L(21) |
≈ |
0.8438836370 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 7 | 1+(−0.866−2.5i)T |
good | 3 | 1+(0.866+0.5i)T+(1.5+2.59i)T2 |
| 11 | 1+(1−1.73i)T+(−5.5−9.52i)T2 |
| 13 | 1−13T2 |
| 17 | 1+(−3.46−2i)T+(8.5+14.7i)T2 |
| 19 | 1+(1+1.73i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−0.866+0.5i)T+(11.5−19.9i)T2 |
| 29 | 1+9T+29T2 |
| 31 | 1+(2−3.46i)T+(−15.5−26.8i)T2 |
| 37 | 1+(3.46−2i)T+(18.5−32.0i)T2 |
| 41 | 1−T+41T2 |
| 43 | 1−9iT−43T2 |
| 47 | 1+(23.5−40.7i)T2 |
| 53 | 1+(−8.66−5i)T+(26.5+45.8i)T2 |
| 59 | 1+(5−8.66i)T+(−29.5−51.0i)T2 |
| 61 | 1+(4.5+7.79i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−4.33−2.5i)T+(33.5+58.0i)T2 |
| 71 | 1−14T+71T2 |
| 73 | 1+(10.3+6i)T+(36.5+63.2i)T2 |
| 79 | 1+(−7−12.1i)T+(−39.5+68.4i)T2 |
| 83 | 1−11iT−83T2 |
| 89 | 1+(7.5+12.9i)T+(−44.5+77.0i)T2 |
| 97 | 1−18iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.638996396282050916486415693151, −9.048138778877038820856969586805, −8.183557032470932569577040534226, −7.33485504776220586487453957317, −6.41358048075850871332563902085, −5.63949061459481675727639200303, −5.02516477771015952698130739756, −3.73283270797228823878172899156, −2.62835528059228636525604196630, −1.41421674611134668641749669216,
0.37116713737588800641613554818, 1.94066432002736558143614523660, 3.35922544540925577761682698651, 4.22494646622992729183394093757, 5.31430870361603401102157181646, 5.73011305717528525436359989637, 7.02291128186673319704000025023, 7.69486275974375710735575818510, 8.412490122837720619156473862869, 9.483535054426076803971367886924