Properties

Label 1400.2.bh.b
Level 14001400
Weight 22
Character orbit 1400.bh
Analytic conductor 11.17911.179
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1400,2,Mod(249,1400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1400, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1400.249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1400=23527 1400 = 2^{3} \cdot 5^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1400.bh (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 11.179056283011.1790562830
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+ζ12q3+(2ζ123ζ12)q72ζ122q9+(2ζ1222)q114ζ12q172ζ122q19+(3ζ122+2)q21++4q99+O(q100) q + \zeta_{12} q^{3} + ( - 2 \zeta_{12}^{3} - \zeta_{12}) q^{7} - 2 \zeta_{12}^{2} q^{9} + (2 \zeta_{12}^{2} - 2) q^{11} - 4 \zeta_{12} q^{17} - 2 \zeta_{12}^{2} q^{19} + ( - 3 \zeta_{12}^{2} + 2) q^{21} + \cdots + 4 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q94q114q19+2q2136q298q31+4q4122q498q5120q5918q614q69+56q71+28q792q8130q89+16q99+O(q100) 4 q - 4 q^{9} - 4 q^{11} - 4 q^{19} + 2 q^{21} - 36 q^{29} - 8 q^{31} + 4 q^{41} - 22 q^{49} - 8 q^{51} - 20 q^{59} - 18 q^{61} - 4 q^{69} + 56 q^{71} + 28 q^{79} - 2 q^{81} - 30 q^{89} + 16 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1400Z)×\left(\mathbb{Z}/1400\mathbb{Z}\right)^\times.

nn 351351 701701 801801 11771177
χ(n)\chi(n) 11 11 ζ122-\zeta_{12}^{2} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
249.1
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
0 −0.866025 0.500000i 0 0 0 0.866025 + 2.50000i 0 −1.00000 1.73205i 0
249.2 0 0.866025 + 0.500000i 0 0 0 −0.866025 2.50000i 0 −1.00000 1.73205i 0
849.1 0 −0.866025 + 0.500000i 0 0 0 0.866025 2.50000i 0 −1.00000 + 1.73205i 0
849.2 0 0.866025 0.500000i 0 0 0 −0.866025 + 2.50000i 0 −1.00000 + 1.73205i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
7.c even 3 1 inner
35.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1400.2.bh.b 4
5.b even 2 1 inner 1400.2.bh.b 4
5.c odd 4 1 280.2.q.a 2
5.c odd 4 1 1400.2.q.e 2
7.c even 3 1 inner 1400.2.bh.b 4
15.e even 4 1 2520.2.bi.a 2
20.e even 4 1 560.2.q.h 2
35.f even 4 1 1960.2.q.k 2
35.j even 6 1 inner 1400.2.bh.b 4
35.k even 12 1 1960.2.a.e 1
35.k even 12 1 1960.2.q.k 2
35.k even 12 1 9800.2.a.bc 1
35.l odd 12 1 280.2.q.a 2
35.l odd 12 1 1400.2.q.e 2
35.l odd 12 1 1960.2.a.i 1
35.l odd 12 1 9800.2.a.r 1
105.x even 12 1 2520.2.bi.a 2
140.w even 12 1 560.2.q.h 2
140.w even 12 1 3920.2.a.m 1
140.x odd 12 1 3920.2.a.y 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.q.a 2 5.c odd 4 1
280.2.q.a 2 35.l odd 12 1
560.2.q.h 2 20.e even 4 1
560.2.q.h 2 140.w even 12 1
1400.2.q.e 2 5.c odd 4 1
1400.2.q.e 2 35.l odd 12 1
1400.2.bh.b 4 1.a even 1 1 trivial
1400.2.bh.b 4 5.b even 2 1 inner
1400.2.bh.b 4 7.c even 3 1 inner
1400.2.bh.b 4 35.j even 6 1 inner
1960.2.a.e 1 35.k even 12 1
1960.2.a.i 1 35.l odd 12 1
1960.2.q.k 2 35.f even 4 1
1960.2.q.k 2 35.k even 12 1
2520.2.bi.a 2 15.e even 4 1
2520.2.bi.a 2 105.x even 12 1
3920.2.a.m 1 140.w even 12 1
3920.2.a.y 1 140.x odd 12 1
9800.2.a.r 1 35.l odd 12 1
9800.2.a.bc 1 35.k even 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1400,[χ])S_{2}^{\mathrm{new}}(1400, [\chi]):

T34T32+1 T_{3}^{4} - T_{3}^{2} + 1 Copy content Toggle raw display
T112+2T11+4 T_{11}^{2} + 2T_{11} + 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+11T2+49 T^{4} + 11T^{2} + 49 Copy content Toggle raw display
1111 (T2+2T+4)2 (T^{2} + 2 T + 4)^{2} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T416T2+256 T^{4} - 16T^{2} + 256 Copy content Toggle raw display
1919 (T2+2T+4)2 (T^{2} + 2 T + 4)^{2} Copy content Toggle raw display
2323 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
2929 (T+9)4 (T + 9)^{4} Copy content Toggle raw display
3131 (T2+4T+16)2 (T^{2} + 4 T + 16)^{2} Copy content Toggle raw display
3737 T416T2+256 T^{4} - 16T^{2} + 256 Copy content Toggle raw display
4141 (T1)4 (T - 1)^{4} Copy content Toggle raw display
4343 (T2+81)2 (T^{2} + 81)^{2} Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 T4100T2+10000 T^{4} - 100 T^{2} + 10000 Copy content Toggle raw display
5959 (T2+10T+100)2 (T^{2} + 10 T + 100)^{2} Copy content Toggle raw display
6161 (T2+9T+81)2 (T^{2} + 9 T + 81)^{2} Copy content Toggle raw display
6767 T425T2+625 T^{4} - 25T^{2} + 625 Copy content Toggle raw display
7171 (T14)4 (T - 14)^{4} Copy content Toggle raw display
7373 T4144T2+20736 T^{4} - 144 T^{2} + 20736 Copy content Toggle raw display
7979 (T214T+196)2 (T^{2} - 14 T + 196)^{2} Copy content Toggle raw display
8383 (T2+121)2 (T^{2} + 121)^{2} Copy content Toggle raw display
8989 (T2+15T+225)2 (T^{2} + 15 T + 225)^{2} Copy content Toggle raw display
9797 (T2+324)2 (T^{2} + 324)^{2} Copy content Toggle raw display
show more
show less