L(s) = 1 | + (−1.36 − 0.366i)2-s + (−1.5 + 0.866i)3-s + (1.73 + i)4-s + (−0.267 − i)5-s + (2.36 − 0.633i)6-s + (−2.36 + 1.36i)7-s + (−1.99 − 2i)8-s + (1.5 − 2.59i)9-s + 1.46i·10-s + (−4.23 − 1.13i)11-s − 3.46·12-s + (−3.36 + 0.901i)13-s + (3.73 − 0.999i)14-s + (1.26 + 1.26i)15-s + (1.99 + 3.46i)16-s − 5.73·17-s + ⋯ |
L(s) = 1 | + (−0.965 − 0.258i)2-s + (−0.866 + 0.499i)3-s + (0.866 + 0.5i)4-s + (−0.119 − 0.447i)5-s + (0.965 − 0.258i)6-s + (−0.894 + 0.516i)7-s + (−0.707 − 0.707i)8-s + (0.5 − 0.866i)9-s + 0.462i·10-s + (−1.27 − 0.341i)11-s − 0.999·12-s + (−0.933 + 0.250i)13-s + (0.997 − 0.267i)14-s + (0.327 + 0.327i)15-s + (0.499 + 0.866i)16-s − 1.39·17-s + ⋯ |
Λ(s)=(=(144s/2ΓC(s)L(s)(−0.999+0.0436i)Λ(2−s)
Λ(s)=(=(144s/2ΓC(s+1/2)L(s)(−0.999+0.0436i)Λ(1−s)
Degree: |
2 |
Conductor: |
144
= 24⋅32
|
Sign: |
−0.999+0.0436i
|
Analytic conductor: |
1.14984 |
Root analytic conductor: |
1.07230 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ144(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 144, ( :1/2), −0.999+0.0436i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.36+0.366i)T |
| 3 | 1+(1.5−0.866i)T |
good | 5 | 1+(0.267+i)T+(−4.33+2.5i)T2 |
| 7 | 1+(2.36−1.36i)T+(3.5−6.06i)T2 |
| 11 | 1+(4.23+1.13i)T+(9.52+5.5i)T2 |
| 13 | 1+(3.36−0.901i)T+(11.2−6.5i)T2 |
| 17 | 1+5.73T+17T2 |
| 19 | 1+(2.36+2.36i)T+19iT2 |
| 23 | 1+(−4.09−2.36i)T+(11.5+19.9i)T2 |
| 29 | 1+(0.633−2.36i)T+(−25.1−14.5i)T2 |
| 31 | 1+(0.267−0.464i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−4.73+4.73i)T−37iT2 |
| 41 | 1+(−2.59−1.5i)T+(20.5+35.5i)T2 |
| 43 | 1+(8.33+2.23i)T+(37.2+21.5i)T2 |
| 47 | 1+(−3.83−6.63i)T+(−23.5+40.7i)T2 |
| 53 | 1+(7.46−7.46i)T−53iT2 |
| 59 | 1+(1.96+7.33i)T+(−51.0+29.5i)T2 |
| 61 | 1+(3−11.1i)T+(−52.8−30.5i)T2 |
| 67 | 1+(−6.59+1.76i)T+(58.0−33.5i)T2 |
| 71 | 1−2.92iT−71T2 |
| 73 | 1+6.26iT−73T2 |
| 79 | 1+(6+10.3i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−0.366+1.36i)T+(−71.8−41.5i)T2 |
| 89 | 1+2iT−89T2 |
| 97 | 1+(5.86+10.1i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.54018850008471894709126549214, −11.29987979499578249116801848688, −10.59849603715670775130457849865, −9.493053514051915962514721438516, −8.803182800278576681178790141765, −7.24309662101516330627775025940, −6.15713347037993703936757882100, −4.74503044809173584197382618871, −2.79700404624231203986260100087, 0,
2.50903389517737029009421037721, 5.03899878026064847581236989605, 6.50269972909689479506041912865, 7.08865245648435220077871456057, 8.139057893690085841848224931074, 9.766870970907271383751969584107, 10.51747393909866444324423786089, 11.23282193544176049839975743328, 12.57458115351867995140311781522