Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [144,2,Mod(13,144)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(144, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([0, 9, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("144.13");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 144.x (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13.1 |
|
−1.36603 | − | 0.366025i | −1.50000 | + | 0.866025i | 1.73205 | + | 1.00000i | −0.267949 | − | 1.00000i | 2.36603 | − | 0.633975i | −2.36603 | + | 1.36603i | −2.00000 | − | 2.00000i | 1.50000 | − | 2.59808i | 1.46410i | ||||||||||||||
61.1 | 0.366025 | + | 1.36603i | −1.50000 | − | 0.866025i | −1.73205 | + | 1.00000i | −3.73205 | − | 1.00000i | 0.633975 | − | 2.36603i | −0.633975 | − | 0.366025i | −2.00000 | − | 2.00000i | 1.50000 | + | 2.59808i | − | 5.46410i | ||||||||||||||
85.1 | 0.366025 | − | 1.36603i | −1.50000 | + | 0.866025i | −1.73205 | − | 1.00000i | −3.73205 | + | 1.00000i | 0.633975 | + | 2.36603i | −0.633975 | + | 0.366025i | −2.00000 | + | 2.00000i | 1.50000 | − | 2.59808i | 5.46410i | |||||||||||||||
133.1 | −1.36603 | + | 0.366025i | −1.50000 | − | 0.866025i | 1.73205 | − | 1.00000i | −0.267949 | + | 1.00000i | 2.36603 | + | 0.633975i | −2.36603 | − | 1.36603i | −2.00000 | + | 2.00000i | 1.50000 | + | 2.59808i | − | 1.46410i | ||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
144.x | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 144.2.x.b | ✓ | 4 |
3.b | odd | 2 | 1 | 432.2.y.c | 4 | ||
4.b | odd | 2 | 1 | 576.2.bb.d | 4 | ||
9.c | even | 3 | 1 | 144.2.x.c | yes | 4 | |
9.d | odd | 6 | 1 | 432.2.y.b | 4 | ||
12.b | even | 2 | 1 | 1728.2.bc.d | 4 | ||
16.e | even | 4 | 1 | 144.2.x.c | yes | 4 | |
16.f | odd | 4 | 1 | 576.2.bb.c | 4 | ||
36.f | odd | 6 | 1 | 576.2.bb.c | 4 | ||
36.h | even | 6 | 1 | 1728.2.bc.a | 4 | ||
48.i | odd | 4 | 1 | 432.2.y.b | 4 | ||
48.k | even | 4 | 1 | 1728.2.bc.a | 4 | ||
144.u | even | 12 | 1 | 1728.2.bc.d | 4 | ||
144.v | odd | 12 | 1 | 576.2.bb.d | 4 | ||
144.w | odd | 12 | 1 | 432.2.y.c | 4 | ||
144.x | even | 12 | 1 | inner | 144.2.x.b | ✓ | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
144.2.x.b | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
144.2.x.b | ✓ | 4 | 144.x | even | 12 | 1 | inner |
144.2.x.c | yes | 4 | 9.c | even | 3 | 1 | |
144.2.x.c | yes | 4 | 16.e | even | 4 | 1 | |
432.2.y.b | 4 | 9.d | odd | 6 | 1 | ||
432.2.y.b | 4 | 48.i | odd | 4 | 1 | ||
432.2.y.c | 4 | 3.b | odd | 2 | 1 | ||
432.2.y.c | 4 | 144.w | odd | 12 | 1 | ||
576.2.bb.c | 4 | 16.f | odd | 4 | 1 | ||
576.2.bb.c | 4 | 36.f | odd | 6 | 1 | ||
576.2.bb.d | 4 | 4.b | odd | 2 | 1 | ||
576.2.bb.d | 4 | 144.v | odd | 12 | 1 | ||
1728.2.bc.a | 4 | 36.h | even | 6 | 1 | ||
1728.2.bc.a | 4 | 48.k | even | 4 | 1 | ||
1728.2.bc.d | 4 | 12.b | even | 2 | 1 | ||
1728.2.bc.d | 4 | 144.u | even | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .