Properties

Label 144.2.x.b
Level 144144
Weight 22
Character orbit 144.x
Analytic conductor 1.1501.150
Analytic rank 11
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [144,2,Mod(13,144)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(144, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 9, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("144.13");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 144=2432 144 = 2^{4} \cdot 3^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 144.x (of order 1212, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.149845789111.14984578911
Analytic rank: 11
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C12]\mathrm{SU}(2)[C_{12}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ123ζ122+ζ12)q2+(ζ1222)q32ζ12q4+(2ζ1232ζ122)q5+(2ζ123+ζ122++1)q6++(6ζ123+9ζ122+6)q99+O(q100) q + ( - \zeta_{12}^{3} - \zeta_{12}^{2} + \zeta_{12}) q^{2} + (\zeta_{12}^{2} - 2) q^{3} - 2 \zeta_{12} q^{4} + (2 \zeta_{12}^{3} - 2 \zeta_{12} - 2) q^{5} + (2 \zeta_{12}^{3} + \zeta_{12}^{2} + \cdots + 1) q^{6} + \cdots + ( - 6 \zeta_{12}^{3} + 9 \zeta_{12}^{2} + \cdots - 6) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q26q38q5+6q66q78q8+6q910q1110q13+8q14+12q15+8q1616q1712q186q19+16q20+6q21+18q22+6q99+O(q100) 4 q - 2 q^{2} - 6 q^{3} - 8 q^{5} + 6 q^{6} - 6 q^{7} - 8 q^{8} + 6 q^{9} - 10 q^{11} - 10 q^{13} + 8 q^{14} + 12 q^{15} + 8 q^{16} - 16 q^{17} - 12 q^{18} - 6 q^{19} + 16 q^{20} + 6 q^{21} + 18 q^{22}+ \cdots - 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/144Z)×\left(\mathbb{Z}/144\mathbb{Z}\right)^\times.

nn 3737 6565 127127
χ(n)\chi(n) ζ123\zeta_{12}^{3} 1+ζ122-1 + \zeta_{12}^{2} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
13.1
−0.866025 0.500000i
0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
−1.36603 0.366025i −1.50000 + 0.866025i 1.73205 + 1.00000i −0.267949 1.00000i 2.36603 0.633975i −2.36603 + 1.36603i −2.00000 2.00000i 1.50000 2.59808i 1.46410i
61.1 0.366025 + 1.36603i −1.50000 0.866025i −1.73205 + 1.00000i −3.73205 1.00000i 0.633975 2.36603i −0.633975 0.366025i −2.00000 2.00000i 1.50000 + 2.59808i 5.46410i
85.1 0.366025 1.36603i −1.50000 + 0.866025i −1.73205 1.00000i −3.73205 + 1.00000i 0.633975 + 2.36603i −0.633975 + 0.366025i −2.00000 + 2.00000i 1.50000 2.59808i 5.46410i
133.1 −1.36603 + 0.366025i −1.50000 0.866025i 1.73205 1.00000i −0.267949 + 1.00000i 2.36603 + 0.633975i −2.36603 1.36603i −2.00000 + 2.00000i 1.50000 + 2.59808i 1.46410i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
144.x even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 144.2.x.b 4
3.b odd 2 1 432.2.y.c 4
4.b odd 2 1 576.2.bb.d 4
9.c even 3 1 144.2.x.c yes 4
9.d odd 6 1 432.2.y.b 4
12.b even 2 1 1728.2.bc.d 4
16.e even 4 1 144.2.x.c yes 4
16.f odd 4 1 576.2.bb.c 4
36.f odd 6 1 576.2.bb.c 4
36.h even 6 1 1728.2.bc.a 4
48.i odd 4 1 432.2.y.b 4
48.k even 4 1 1728.2.bc.a 4
144.u even 12 1 1728.2.bc.d 4
144.v odd 12 1 576.2.bb.d 4
144.w odd 12 1 432.2.y.c 4
144.x even 12 1 inner 144.2.x.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
144.2.x.b 4 1.a even 1 1 trivial
144.2.x.b 4 144.x even 12 1 inner
144.2.x.c yes 4 9.c even 3 1
144.2.x.c yes 4 16.e even 4 1
432.2.y.b 4 9.d odd 6 1
432.2.y.b 4 48.i odd 4 1
432.2.y.c 4 3.b odd 2 1
432.2.y.c 4 144.w odd 12 1
576.2.bb.c 4 16.f odd 4 1
576.2.bb.c 4 36.f odd 6 1
576.2.bb.d 4 4.b odd 2 1
576.2.bb.d 4 144.v odd 12 1
1728.2.bc.a 4 36.h even 6 1
1728.2.bc.a 4 48.k even 4 1
1728.2.bc.d 4 12.b even 2 1
1728.2.bc.d 4 144.u even 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T54+8T53+20T52+16T5+16 T_{5}^{4} + 8T_{5}^{3} + 20T_{5}^{2} + 16T_{5} + 16 acting on S2new(144,[χ])S_{2}^{\mathrm{new}}(144, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+2T3++4 T^{4} + 2 T^{3} + \cdots + 4 Copy content Toggle raw display
33 (T2+3T+3)2 (T^{2} + 3 T + 3)^{2} Copy content Toggle raw display
55 T4+8T3++16 T^{4} + 8 T^{3} + \cdots + 16 Copy content Toggle raw display
77 T4+6T3++4 T^{4} + 6 T^{3} + \cdots + 4 Copy content Toggle raw display
1111 T4+10T3++169 T^{4} + 10 T^{3} + \cdots + 169 Copy content Toggle raw display
1313 T4+10T3++484 T^{4} + 10 T^{3} + \cdots + 484 Copy content Toggle raw display
1717 (T2+8T+13)2 (T^{2} + 8 T + 13)^{2} Copy content Toggle raw display
1919 T4+6T3++9 T^{4} + 6 T^{3} + \cdots + 9 Copy content Toggle raw display
2323 T46T3++36 T^{4} - 6 T^{3} + \cdots + 36 Copy content Toggle raw display
2929 T4+6T3++36 T^{4} + 6 T^{3} + \cdots + 36 Copy content Toggle raw display
3131 T4+8T3++16 T^{4} + 8 T^{3} + \cdots + 16 Copy content Toggle raw display
3737 T412T3++144 T^{4} - 12 T^{3} + \cdots + 144 Copy content Toggle raw display
4141 T49T2+81 T^{4} - 9T^{2} + 81 Copy content Toggle raw display
4343 T4+16T3++121 T^{4} + 16 T^{3} + \cdots + 121 Copy content Toggle raw display
4747 T4+2T3++5476 T^{4} + 2 T^{3} + \cdots + 5476 Copy content Toggle raw display
5353 T4+16T3++64 T^{4} + 16 T^{3} + \cdots + 64 Copy content Toggle raw display
5959 T46T3++1521 T^{4} - 6 T^{3} + \cdots + 1521 Copy content Toggle raw display
6161 T4+12T3++1296 T^{4} + 12 T^{3} + \cdots + 1296 Copy content Toggle raw display
6767 T416T3++1369 T^{4} - 16 T^{3} + \cdots + 1369 Copy content Toggle raw display
7171 T4+128T2+1024 T^{4} + 128T^{2} + 1024 Copy content Toggle raw display
7373 T4+134T2+3721 T^{4} + 134T^{2} + 3721 Copy content Toggle raw display
7979 (T2+12T+144)2 (T^{2} + 12 T + 144)^{2} Copy content Toggle raw display
8383 T4+2T3++4 T^{4} + 2 T^{3} + \cdots + 4 Copy content Toggle raw display
8989 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
9797 T4+20T3++9409 T^{4} + 20 T^{3} + \cdots + 9409 Copy content Toggle raw display
show more
show less