L(s) = 1 | + 4.24i·5-s + 4·7-s + 16.9i·11-s + 8·13-s + 12.7i·17-s + 16·19-s − 16.9i·23-s + 7.00·25-s − 4.24i·29-s − 44·31-s + 16.9i·35-s − 34·37-s − 46.6i·41-s + 40·43-s − 84.8i·47-s + ⋯ |
L(s) = 1 | + 0.848i·5-s + 0.571·7-s + 1.54i·11-s + 0.615·13-s + 0.748i·17-s + 0.842·19-s − 0.737i·23-s + 0.280·25-s − 0.146i·29-s − 1.41·31-s + 0.484i·35-s − 0.918·37-s − 1.13i·41-s + 0.930·43-s − 1.80i·47-s + ⋯ |
Λ(s)=(=(144s/2ΓC(s)L(s)(0.577−0.816i)Λ(3−s)
Λ(s)=(=(144s/2ΓC(s+1)L(s)(0.577−0.816i)Λ(1−s)
Degree: |
2 |
Conductor: |
144
= 24⋅32
|
Sign: |
0.577−0.816i
|
Analytic conductor: |
3.92371 |
Root analytic conductor: |
1.98083 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ144(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 144, ( :1), 0.577−0.816i)
|
Particular Values
L(23) |
≈ |
1.31967+0.683116i |
L(21) |
≈ |
1.31967+0.683116i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−4.24iT−25T2 |
| 7 | 1−4T+49T2 |
| 11 | 1−16.9iT−121T2 |
| 13 | 1−8T+169T2 |
| 17 | 1−12.7iT−289T2 |
| 19 | 1−16T+361T2 |
| 23 | 1+16.9iT−529T2 |
| 29 | 1+4.24iT−841T2 |
| 31 | 1+44T+961T2 |
| 37 | 1+34T+1.36e3T2 |
| 41 | 1+46.6iT−1.68e3T2 |
| 43 | 1−40T+1.84e3T2 |
| 47 | 1+84.8iT−2.20e3T2 |
| 53 | 1+38.1iT−2.80e3T2 |
| 59 | 1−33.9iT−3.48e3T2 |
| 61 | 1−50T+3.72e3T2 |
| 67 | 1+8T+4.48e3T2 |
| 71 | 1+50.9iT−5.04e3T2 |
| 73 | 1+16T+5.32e3T2 |
| 79 | 1−76T+6.24e3T2 |
| 83 | 1−118.iT−6.88e3T2 |
| 89 | 1+12.7iT−7.92e3T2 |
| 97 | 1−176T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.95144612329030438916692540454, −11.99285281882888634036664730608, −10.87886488031190005676882756420, −10.14994928887121089115636409590, −8.859447563945669516645463318685, −7.56127038151087732071704044096, −6.70842282145024197873733413351, −5.21592030494207403613256592313, −3.77186660978585751289383881603, −2.01410154362396858144121923750,
1.11813309660071895897224950303, 3.35682349327906350185366723474, 4.94699627927993528046479845951, 5.92088429781282570169664953717, 7.56535336701896195563304015038, 8.602559935029808092750102300036, 9.366793536857037910290904970593, 10.95036025816715436989989699316, 11.55734411058502514096370369368, 12.78812196102597744355154839078