Properties

Label 2-12e2-3.2-c2-0-1
Degree $2$
Conductor $144$
Sign $0.577 - 0.816i$
Analytic cond. $3.92371$
Root an. cond. $1.98083$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.24i·5-s + 4·7-s + 16.9i·11-s + 8·13-s + 12.7i·17-s + 16·19-s − 16.9i·23-s + 7.00·25-s − 4.24i·29-s − 44·31-s + 16.9i·35-s − 34·37-s − 46.6i·41-s + 40·43-s − 84.8i·47-s + ⋯
L(s)  = 1  + 0.848i·5-s + 0.571·7-s + 1.54i·11-s + 0.615·13-s + 0.748i·17-s + 0.842·19-s − 0.737i·23-s + 0.280·25-s − 0.146i·29-s − 1.41·31-s + 0.484i·35-s − 0.918·37-s − 1.13i·41-s + 0.930·43-s − 1.80i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(144\)    =    \(2^{4} \cdot 3^{2}\)
Sign: $0.577 - 0.816i$
Analytic conductor: \(3.92371\)
Root analytic conductor: \(1.98083\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{144} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 144,\ (\ :1),\ 0.577 - 0.816i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.31967 + 0.683116i\)
\(L(\frac12)\) \(\approx\) \(1.31967 + 0.683116i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 4.24iT - 25T^{2} \)
7 \( 1 - 4T + 49T^{2} \)
11 \( 1 - 16.9iT - 121T^{2} \)
13 \( 1 - 8T + 169T^{2} \)
17 \( 1 - 12.7iT - 289T^{2} \)
19 \( 1 - 16T + 361T^{2} \)
23 \( 1 + 16.9iT - 529T^{2} \)
29 \( 1 + 4.24iT - 841T^{2} \)
31 \( 1 + 44T + 961T^{2} \)
37 \( 1 + 34T + 1.36e3T^{2} \)
41 \( 1 + 46.6iT - 1.68e3T^{2} \)
43 \( 1 - 40T + 1.84e3T^{2} \)
47 \( 1 + 84.8iT - 2.20e3T^{2} \)
53 \( 1 + 38.1iT - 2.80e3T^{2} \)
59 \( 1 - 33.9iT - 3.48e3T^{2} \)
61 \( 1 - 50T + 3.72e3T^{2} \)
67 \( 1 + 8T + 4.48e3T^{2} \)
71 \( 1 + 50.9iT - 5.04e3T^{2} \)
73 \( 1 + 16T + 5.32e3T^{2} \)
79 \( 1 - 76T + 6.24e3T^{2} \)
83 \( 1 - 118. iT - 6.88e3T^{2} \)
89 \( 1 + 12.7iT - 7.92e3T^{2} \)
97 \( 1 - 176T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.95144612329030438916692540454, −11.99285281882888634036664730608, −10.87886488031190005676882756420, −10.14994928887121089115636409590, −8.859447563945669516645463318685, −7.56127038151087732071704044096, −6.70842282145024197873733413351, −5.21592030494207403613256592313, −3.77186660978585751289383881603, −2.01410154362396858144121923750, 1.11813309660071895897224950303, 3.35682349327906350185366723474, 4.94699627927993528046479845951, 5.92088429781282570169664953717, 7.56535336701896195563304015038, 8.602559935029808092750102300036, 9.366793536857037910290904970593, 10.95036025816715436989989699316, 11.55734411058502514096370369368, 12.78812196102597744355154839078

Graph of the $Z$-function along the critical line