Properties

Label 144.3.e.b
Level $144$
Weight $3$
Character orbit 144.e
Analytic conductor $3.924$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [144,3,Mod(17,144)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(144, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("144.17");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 144.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.92371580679\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 3\sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{5} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{5} + 4 q^{7} + 4 \beta q^{11} + 8 q^{13} + 3 \beta q^{17} + 16 q^{19} - 4 \beta q^{23} + 7 q^{25} - \beta q^{29} - 44 q^{31} + 4 \beta q^{35} - 34 q^{37} - 11 \beta q^{41} + 40 q^{43} - 20 \beta q^{47} - 33 q^{49} - 9 \beta q^{53} - 72 q^{55} + 8 \beta q^{59} + 50 q^{61} + 8 \beta q^{65} - 8 q^{67} - 12 \beta q^{71} - 16 q^{73} + 16 \beta q^{77} + 76 q^{79} + 28 \beta q^{83} - 54 q^{85} - 3 \beta q^{89} + 32 q^{91} + 16 \beta q^{95} + 176 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 8 q^{7} + 16 q^{13} + 32 q^{19} + 14 q^{25} - 88 q^{31} - 68 q^{37} + 80 q^{43} - 66 q^{49} - 144 q^{55} + 100 q^{61} - 16 q^{67} - 32 q^{73} + 152 q^{79} - 108 q^{85} + 64 q^{91} + 352 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
17.1
1.41421i
1.41421i
0 0 0 4.24264i 0 4.00000 0 0 0
17.2 0 0 0 4.24264i 0 4.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 144.3.e.b 2
3.b odd 2 1 inner 144.3.e.b 2
4.b odd 2 1 18.3.b.a 2
5.b even 2 1 3600.3.l.d 2
5.c odd 4 2 3600.3.c.b 4
8.b even 2 1 576.3.e.f 2
8.d odd 2 1 576.3.e.c 2
9.c even 3 2 1296.3.q.f 4
9.d odd 6 2 1296.3.q.f 4
12.b even 2 1 18.3.b.a 2
15.d odd 2 1 3600.3.l.d 2
15.e even 4 2 3600.3.c.b 4
16.e even 4 2 2304.3.h.c 4
16.f odd 4 2 2304.3.h.f 4
20.d odd 2 1 450.3.d.f 2
20.e even 4 2 450.3.b.b 4
24.f even 2 1 576.3.e.c 2
24.h odd 2 1 576.3.e.f 2
28.d even 2 1 882.3.b.a 2
28.f even 6 2 882.3.s.d 4
28.g odd 6 2 882.3.s.b 4
36.f odd 6 2 162.3.d.b 4
36.h even 6 2 162.3.d.b 4
44.c even 2 1 2178.3.c.d 2
48.i odd 4 2 2304.3.h.c 4
48.k even 4 2 2304.3.h.f 4
52.b odd 2 1 3042.3.c.e 2
52.f even 4 2 3042.3.d.a 4
60.h even 2 1 450.3.d.f 2
60.l odd 4 2 450.3.b.b 4
84.h odd 2 1 882.3.b.a 2
84.j odd 6 2 882.3.s.d 4
84.n even 6 2 882.3.s.b 4
132.d odd 2 1 2178.3.c.d 2
156.h even 2 1 3042.3.c.e 2
156.l odd 4 2 3042.3.d.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.3.b.a 2 4.b odd 2 1
18.3.b.a 2 12.b even 2 1
144.3.e.b 2 1.a even 1 1 trivial
144.3.e.b 2 3.b odd 2 1 inner
162.3.d.b 4 36.f odd 6 2
162.3.d.b 4 36.h even 6 2
450.3.b.b 4 20.e even 4 2
450.3.b.b 4 60.l odd 4 2
450.3.d.f 2 20.d odd 2 1
450.3.d.f 2 60.h even 2 1
576.3.e.c 2 8.d odd 2 1
576.3.e.c 2 24.f even 2 1
576.3.e.f 2 8.b even 2 1
576.3.e.f 2 24.h odd 2 1
882.3.b.a 2 28.d even 2 1
882.3.b.a 2 84.h odd 2 1
882.3.s.b 4 28.g odd 6 2
882.3.s.b 4 84.n even 6 2
882.3.s.d 4 28.f even 6 2
882.3.s.d 4 84.j odd 6 2
1296.3.q.f 4 9.c even 3 2
1296.3.q.f 4 9.d odd 6 2
2178.3.c.d 2 44.c even 2 1
2178.3.c.d 2 132.d odd 2 1
2304.3.h.c 4 16.e even 4 2
2304.3.h.c 4 48.i odd 4 2
2304.3.h.f 4 16.f odd 4 2
2304.3.h.f 4 48.k even 4 2
3042.3.c.e 2 52.b odd 2 1
3042.3.c.e 2 156.h even 2 1
3042.3.d.a 4 52.f even 4 2
3042.3.d.a 4 156.l odd 4 2
3600.3.c.b 4 5.c odd 4 2
3600.3.c.b 4 15.e even 4 2
3600.3.l.d 2 5.b even 2 1
3600.3.l.d 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 18 \) acting on \(S_{3}^{\mathrm{new}}(144, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 18 \) Copy content Toggle raw display
$7$ \( (T - 4)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 288 \) Copy content Toggle raw display
$13$ \( (T - 8)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 162 \) Copy content Toggle raw display
$19$ \( (T - 16)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 288 \) Copy content Toggle raw display
$29$ \( T^{2} + 18 \) Copy content Toggle raw display
$31$ \( (T + 44)^{2} \) Copy content Toggle raw display
$37$ \( (T + 34)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 2178 \) Copy content Toggle raw display
$43$ \( (T - 40)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 7200 \) Copy content Toggle raw display
$53$ \( T^{2} + 1458 \) Copy content Toggle raw display
$59$ \( T^{2} + 1152 \) Copy content Toggle raw display
$61$ \( (T - 50)^{2} \) Copy content Toggle raw display
$67$ \( (T + 8)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 2592 \) Copy content Toggle raw display
$73$ \( (T + 16)^{2} \) Copy content Toggle raw display
$79$ \( (T - 76)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 14112 \) Copy content Toggle raw display
$89$ \( T^{2} + 162 \) Copy content Toggle raw display
$97$ \( (T - 176)^{2} \) Copy content Toggle raw display
show more
show less