L(s) = 1 | − 10·5-s − 8·7-s + 64·11-s + 12·13-s − 4·17-s − 208·19-s + 120·23-s + 75·25-s + 292·29-s − 176·31-s + 80·35-s − 356·37-s − 100·41-s + 376·43-s − 280·47-s − 38·49-s − 316·53-s − 640·55-s + 720·59-s − 1.26e3·61-s − 120·65-s + 744·67-s − 48·71-s − 940·73-s − 512·77-s − 32·79-s − 1.59e3·83-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 0.431·7-s + 1.75·11-s + 0.256·13-s − 0.0570·17-s − 2.51·19-s + 1.08·23-s + 3/5·25-s + 1.86·29-s − 1.01·31-s + 0.386·35-s − 1.58·37-s − 0.380·41-s + 1.33·43-s − 0.868·47-s − 0.110·49-s − 0.818·53-s − 1.56·55-s + 1.58·59-s − 2.66·61-s − 0.228·65-s + 1.35·67-s − 0.0802·71-s − 1.50·73-s − 0.757·77-s − 0.0455·79-s − 2.10·83-s + ⋯ |
Λ(s)=(=(2073600s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(2073600s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2073600
= 210⋅34⋅52
|
Sign: |
1
|
Analytic conductor: |
7218.66 |
Root analytic conductor: |
9.21752 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2073600, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
1.404626744 |
L(21) |
≈ |
1.404626744 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1 | (1+pT)2 |
good | 7 | D4 | 1+8T+102T2+8p3T3+p6T4 |
| 11 | D4 | 1−64T+2822T2−64p3T3+p6T4 |
| 13 | D4 | 1−12T+2894T2−12p3T3+p6T4 |
| 17 | D4 | 1+4T−3994T2+4p3T3+p6T4 |
| 19 | D4 | 1+208T+22998T2+208p3T3+p6T4 |
| 23 | D4 | 1−120T+25030T2−120p3T3+p6T4 |
| 29 | D4 | 1−292T+63950T2−292p3T3+p6T4 |
| 31 | D4 | 1+176T+66462T2+176p3T3+p6T4 |
| 37 | D4 | 1+356T+126846T2+356p3T3+p6T4 |
| 41 | D4 | 1+100T+101942T2+100p3T3+p6T4 |
| 43 | D4 | 1−376T+161502T2−376p3T3+p6T4 |
| 47 | D4 | 1+280T+223190T2+280p3T3+p6T4 |
| 53 | D4 | 1+316T+308894T2+316p3T3+p6T4 |
| 59 | D4 | 1−720T+530758T2−720p3T3+p6T4 |
| 61 | D4 | 1+1268T+831342T2+1268p3T3+p6T4 |
| 67 | D4 | 1−744T+686894T2−744p3T3+p6T4 |
| 71 | D4 | 1+48T−424178T2+48p3T3+p6T4 |
| 73 | D4 | 1+940T+653334T2+940p3T3+p6T4 |
| 79 | D4 | 1+32T+276318T2+32p3T3+p6T4 |
| 83 | D4 | 1+1592T+1724174T2+1592p3T3+p6T4 |
| 89 | D4 | 1−780T+1506742T2−780p3T3+p6T4 |
| 97 | D4 | 1−1220T+2159046T2−1220p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.973801619874975540379668426171, −8.935767511904099718001182259529, −8.711478579753449418536952165435, −8.369270924290798597498347477850, −7.69974727351707514899423286269, −7.29102743881890859235277841509, −6.76799234624203607251051285552, −6.68204654785705396439806314942, −6.10331448735096360129436861705, −5.95382240961210189845530085716, −4.84696008836074368626689389313, −4.83175487950912518280131147525, −4.05064931601639028932095118005, −4.03307804656731597282123137115, −3.24952369985520529897544702800, −3.05372288131847205122141959279, −2.12912958084705137500288520384, −1.65180196271476136767296218214, −0.970065573736024977370780967225, −0.31248267891374571895479596989,
0.31248267891374571895479596989, 0.970065573736024977370780967225, 1.65180196271476136767296218214, 2.12912958084705137500288520384, 3.05372288131847205122141959279, 3.24952369985520529897544702800, 4.03307804656731597282123137115, 4.05064931601639028932095118005, 4.83175487950912518280131147525, 4.84696008836074368626689389313, 5.95382240961210189845530085716, 6.10331448735096360129436861705, 6.68204654785705396439806314942, 6.76799234624203607251051285552, 7.29102743881890859235277841509, 7.69974727351707514899423286269, 8.369270924290798597498347477850, 8.711478579753449418536952165435, 8.935767511904099718001182259529, 8.973801619874975540379668426171