Properties

Label 1440.4.a.t.1.2
Level $1440$
Weight $4$
Character 1440.1
Self dual yes
Analytic conductor $84.963$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,4,Mod(1,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(84.9627504083\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 160)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.44949\) of defining polynomial
Character \(\chi\) \(=\) 1440.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.00000 q^{5} +20.4949 q^{7} +61.3939 q^{11} +45.1918 q^{13} +115.576 q^{17} -64.8082 q^{19} +6.11123 q^{23} +25.0000 q^{25} +224.384 q^{29} -58.6061 q^{31} -102.474 q^{35} -99.6163 q^{37} +145.959 q^{41} +6.73776 q^{43} -203.687 q^{47} +77.0408 q^{49} -275.576 q^{53} -306.969 q^{55} +262.020 q^{59} -790.767 q^{61} -225.959 q^{65} +141.748 q^{67} +1043.98 q^{71} -1057.88 q^{73} +1258.26 q^{77} +826.624 q^{79} -1026.25 q^{83} -577.878 q^{85} +154.849 q^{89} +926.202 q^{91} +324.041 q^{95} +414.041 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 10 q^{5} - 8 q^{7} + 64 q^{11} + 12 q^{13} - 4 q^{17} - 208 q^{19} + 120 q^{23} + 50 q^{25} + 292 q^{29} - 176 q^{31} + 40 q^{35} - 356 q^{37} - 100 q^{41} + 376 q^{43} - 280 q^{47} + 546 q^{49} - 316 q^{53}+ \cdots + 1220 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 20.4949 1.10662 0.553310 0.832975i \(-0.313364\pi\)
0.553310 + 0.832975i \(0.313364\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 61.3939 1.68281 0.841407 0.540402i \(-0.181728\pi\)
0.841407 + 0.540402i \(0.181728\pi\)
\(12\) 0 0
\(13\) 45.1918 0.964151 0.482075 0.876130i \(-0.339883\pi\)
0.482075 + 0.876130i \(0.339883\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 115.576 1.64889 0.824446 0.565940i \(-0.191487\pi\)
0.824446 + 0.565940i \(0.191487\pi\)
\(18\) 0 0
\(19\) −64.8082 −0.782527 −0.391263 0.920279i \(-0.627962\pi\)
−0.391263 + 0.920279i \(0.627962\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.11123 0.0554034 0.0277017 0.999616i \(-0.491181\pi\)
0.0277017 + 0.999616i \(0.491181\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 224.384 1.43679 0.718397 0.695634i \(-0.244876\pi\)
0.718397 + 0.695634i \(0.244876\pi\)
\(30\) 0 0
\(31\) −58.6061 −0.339547 −0.169774 0.985483i \(-0.554304\pi\)
−0.169774 + 0.985483i \(0.554304\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −102.474 −0.494896
\(36\) 0 0
\(37\) −99.6163 −0.442617 −0.221308 0.975204i \(-0.571033\pi\)
−0.221308 + 0.975204i \(0.571033\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 145.959 0.555975 0.277988 0.960585i \(-0.410333\pi\)
0.277988 + 0.960585i \(0.410333\pi\)
\(42\) 0 0
\(43\) 6.73776 0.0238953 0.0119477 0.999929i \(-0.496197\pi\)
0.0119477 + 0.999929i \(0.496197\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −203.687 −0.632144 −0.316072 0.948735i \(-0.602364\pi\)
−0.316072 + 0.948735i \(0.602364\pi\)
\(48\) 0 0
\(49\) 77.0408 0.224609
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −275.576 −0.714211 −0.357106 0.934064i \(-0.616236\pi\)
−0.357106 + 0.934064i \(0.616236\pi\)
\(54\) 0 0
\(55\) −306.969 −0.752577
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 262.020 0.578172 0.289086 0.957303i \(-0.406649\pi\)
0.289086 + 0.957303i \(0.406649\pi\)
\(60\) 0 0
\(61\) −790.767 −1.65979 −0.829897 0.557917i \(-0.811601\pi\)
−0.829897 + 0.557917i \(0.811601\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −225.959 −0.431181
\(66\) 0 0
\(67\) 141.748 0.258467 0.129233 0.991614i \(-0.458748\pi\)
0.129233 + 0.991614i \(0.458748\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1043.98 1.74503 0.872516 0.488585i \(-0.162487\pi\)
0.872516 + 0.488585i \(0.162487\pi\)
\(72\) 0 0
\(73\) −1057.88 −1.69610 −0.848049 0.529917i \(-0.822223\pi\)
−0.848049 + 0.529917i \(0.822223\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1258.26 1.86224
\(78\) 0 0
\(79\) 826.624 1.17725 0.588624 0.808407i \(-0.299670\pi\)
0.588624 + 0.808407i \(0.299670\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1026.25 −1.35718 −0.678589 0.734518i \(-0.737408\pi\)
−0.678589 + 0.734518i \(0.737408\pi\)
\(84\) 0 0
\(85\) −577.878 −0.737407
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 154.849 0.184427 0.0922133 0.995739i \(-0.470606\pi\)
0.0922133 + 0.995739i \(0.470606\pi\)
\(90\) 0 0
\(91\) 926.202 1.06695
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 324.041 0.349957
\(96\) 0 0
\(97\) 414.041 0.433397 0.216698 0.976239i \(-0.430471\pi\)
0.216698 + 0.976239i \(0.430471\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1776.99 −1.75066 −0.875331 0.483524i \(-0.839357\pi\)
−0.875331 + 0.483524i \(0.839357\pi\)
\(102\) 0 0
\(103\) 767.991 0.734683 0.367342 0.930086i \(-0.380268\pi\)
0.367342 + 0.930086i \(0.380268\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1649.00 1.48986 0.744929 0.667144i \(-0.232483\pi\)
0.744929 + 0.667144i \(0.232483\pi\)
\(108\) 0 0
\(109\) 884.220 0.777000 0.388500 0.921449i \(-0.372993\pi\)
0.388500 + 0.921449i \(0.372993\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1138.85 0.948088 0.474044 0.880501i \(-0.342794\pi\)
0.474044 + 0.880501i \(0.342794\pi\)
\(114\) 0 0
\(115\) −30.5561 −0.0247772
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2368.71 1.82470
\(120\) 0 0
\(121\) 2438.21 1.83186
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −1701.60 −1.18892 −0.594460 0.804125i \(-0.702634\pi\)
−0.594460 + 0.804125i \(0.702634\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1540.99 −1.02776 −0.513880 0.857862i \(-0.671792\pi\)
−0.513880 + 0.857862i \(0.671792\pi\)
\(132\) 0 0
\(133\) −1328.24 −0.865960
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1391.53 0.867787 0.433894 0.900964i \(-0.357139\pi\)
0.433894 + 0.900964i \(0.357139\pi\)
\(138\) 0 0
\(139\) −156.649 −0.0955885 −0.0477942 0.998857i \(-0.515219\pi\)
−0.0477942 + 0.998857i \(0.515219\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2774.50 1.62249
\(144\) 0 0
\(145\) −1121.92 −0.642553
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −214.245 −0.117796 −0.0588981 0.998264i \(-0.518759\pi\)
−0.0588981 + 0.998264i \(0.518759\pi\)
\(150\) 0 0
\(151\) 35.0510 0.0188901 0.00944507 0.999955i \(-0.496993\pi\)
0.00944507 + 0.999955i \(0.496993\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 293.031 0.151850
\(156\) 0 0
\(157\) 349.592 0.177710 0.0888550 0.996045i \(-0.471679\pi\)
0.0888550 + 0.996045i \(0.471679\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 125.249 0.0613106
\(162\) 0 0
\(163\) 2029.04 0.975010 0.487505 0.873120i \(-0.337907\pi\)
0.487505 + 0.873120i \(0.337907\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 214.619 0.0994476 0.0497238 0.998763i \(-0.484166\pi\)
0.0497238 + 0.998763i \(0.484166\pi\)
\(168\) 0 0
\(169\) −154.698 −0.0704133
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3424.99 −1.50518 −0.752592 0.658487i \(-0.771197\pi\)
−0.752592 + 0.658487i \(0.771197\pi\)
\(174\) 0 0
\(175\) 512.372 0.221324
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2030.10 0.847692 0.423846 0.905734i \(-0.360680\pi\)
0.423846 + 0.905734i \(0.360680\pi\)
\(180\) 0 0
\(181\) 204.139 0.0838316 0.0419158 0.999121i \(-0.486654\pi\)
0.0419158 + 0.999121i \(0.486654\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 498.082 0.197944
\(186\) 0 0
\(187\) 7095.63 2.77478
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 617.353 0.233875 0.116937 0.993139i \(-0.462692\pi\)
0.116937 + 0.993139i \(0.462692\pi\)
\(192\) 0 0
\(193\) 3071.33 1.14549 0.572744 0.819734i \(-0.305879\pi\)
0.572744 + 0.819734i \(0.305879\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 812.098 0.293703 0.146852 0.989159i \(-0.453086\pi\)
0.146852 + 0.989159i \(0.453086\pi\)
\(198\) 0 0
\(199\) −1065.93 −0.379709 −0.189855 0.981812i \(-0.560802\pi\)
−0.189855 + 0.981812i \(0.560802\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4598.72 1.58998
\(204\) 0 0
\(205\) −729.796 −0.248640
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3978.82 −1.31685
\(210\) 0 0
\(211\) −1222.24 −0.398779 −0.199390 0.979920i \(-0.563896\pi\)
−0.199390 + 0.979920i \(0.563896\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −33.6888 −0.0106863
\(216\) 0 0
\(217\) −1201.13 −0.375750
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5223.07 1.58978
\(222\) 0 0
\(223\) 414.374 0.124433 0.0622165 0.998063i \(-0.480183\pi\)
0.0622165 + 0.998063i \(0.480183\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2293.88 0.670707 0.335353 0.942092i \(-0.391144\pi\)
0.335353 + 0.942092i \(0.391144\pi\)
\(228\) 0 0
\(229\) 3214.72 0.927662 0.463831 0.885924i \(-0.346475\pi\)
0.463831 + 0.885924i \(0.346475\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3598.60 −1.01181 −0.505905 0.862589i \(-0.668841\pi\)
−0.505905 + 0.862589i \(0.668841\pi\)
\(234\) 0 0
\(235\) 1018.43 0.282703
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2462.58 −0.666491 −0.333245 0.942840i \(-0.608144\pi\)
−0.333245 + 0.942840i \(0.608144\pi\)
\(240\) 0 0
\(241\) 4153.27 1.11011 0.555054 0.831815i \(-0.312698\pi\)
0.555054 + 0.831815i \(0.312698\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −385.204 −0.100448
\(246\) 0 0
\(247\) −2928.80 −0.754474
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1335.26 0.335779 0.167890 0.985806i \(-0.446305\pi\)
0.167890 + 0.985806i \(0.446305\pi\)
\(252\) 0 0
\(253\) 375.192 0.0932336
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 530.359 0.128727 0.0643636 0.997927i \(-0.479498\pi\)
0.0643636 + 0.997927i \(0.479498\pi\)
\(258\) 0 0
\(259\) −2041.63 −0.489809
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2234.23 0.523836 0.261918 0.965090i \(-0.415645\pi\)
0.261918 + 0.965090i \(0.415645\pi\)
\(264\) 0 0
\(265\) 1377.88 0.319405
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −5096.09 −1.15507 −0.577535 0.816366i \(-0.695985\pi\)
−0.577535 + 0.816366i \(0.695985\pi\)
\(270\) 0 0
\(271\) 1353.39 0.303367 0.151684 0.988429i \(-0.451530\pi\)
0.151684 + 0.988429i \(0.451530\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1534.85 0.336563
\(276\) 0 0
\(277\) −8879.57 −1.92607 −0.963035 0.269376i \(-0.913183\pi\)
−0.963035 + 0.269376i \(0.913183\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1145.55 0.243195 0.121598 0.992579i \(-0.461198\pi\)
0.121598 + 0.992579i \(0.461198\pi\)
\(282\) 0 0
\(283\) 385.399 0.0809526 0.0404763 0.999180i \(-0.487112\pi\)
0.0404763 + 0.999180i \(0.487112\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2991.42 0.615254
\(288\) 0 0
\(289\) 8444.70 1.71885
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3812.30 −0.760126 −0.380063 0.924961i \(-0.624098\pi\)
−0.380063 + 0.924961i \(0.624098\pi\)
\(294\) 0 0
\(295\) −1310.10 −0.258566
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 276.178 0.0534172
\(300\) 0 0
\(301\) 138.090 0.0264430
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3953.84 0.742282
\(306\) 0 0
\(307\) 6897.45 1.28228 0.641138 0.767426i \(-0.278463\pi\)
0.641138 + 0.767426i \(0.278463\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8125.39 1.48151 0.740753 0.671778i \(-0.234469\pi\)
0.740753 + 0.671778i \(0.234469\pi\)
\(312\) 0 0
\(313\) 2052.66 0.370681 0.185341 0.982674i \(-0.440661\pi\)
0.185341 + 0.982674i \(0.440661\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4175.12 −0.739741 −0.369871 0.929083i \(-0.620598\pi\)
−0.369871 + 0.929083i \(0.620598\pi\)
\(318\) 0 0
\(319\) 13775.8 2.41786
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −7490.24 −1.29030
\(324\) 0 0
\(325\) 1129.80 0.192830
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4174.54 −0.699543
\(330\) 0 0
\(331\) −11738.2 −1.94921 −0.974607 0.223923i \(-0.928114\pi\)
−0.974607 + 0.223923i \(0.928114\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −708.740 −0.115590
\(336\) 0 0
\(337\) −1698.85 −0.274606 −0.137303 0.990529i \(-0.543843\pi\)
−0.137303 + 0.990529i \(0.543843\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3598.06 −0.571395
\(342\) 0 0
\(343\) −5450.81 −0.858064
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9682.53 1.49794 0.748970 0.662604i \(-0.230549\pi\)
0.748970 + 0.662604i \(0.230549\pi\)
\(348\) 0 0
\(349\) −10755.1 −1.64959 −0.824796 0.565430i \(-0.808710\pi\)
−0.824796 + 0.565430i \(0.808710\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 7044.94 1.06222 0.531111 0.847302i \(-0.321775\pi\)
0.531111 + 0.847302i \(0.321775\pi\)
\(354\) 0 0
\(355\) −5219.89 −0.780402
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 805.576 0.118431 0.0592154 0.998245i \(-0.481140\pi\)
0.0592154 + 0.998245i \(0.481140\pi\)
\(360\) 0 0
\(361\) −2658.90 −0.387652
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 5289.39 0.758518
\(366\) 0 0
\(367\) 11157.2 1.58692 0.793460 0.608623i \(-0.208278\pi\)
0.793460 + 0.608623i \(0.208278\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −5647.89 −0.790361
\(372\) 0 0
\(373\) −4634.24 −0.643303 −0.321652 0.946858i \(-0.604238\pi\)
−0.321652 + 0.946858i \(0.604238\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 10140.3 1.38529
\(378\) 0 0
\(379\) 754.678 0.102283 0.0511414 0.998691i \(-0.483714\pi\)
0.0511414 + 0.998691i \(0.483714\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −984.709 −0.131374 −0.0656871 0.997840i \(-0.520924\pi\)
−0.0656871 + 0.997840i \(0.520924\pi\)
\(384\) 0 0
\(385\) −6291.31 −0.832817
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3259.21 0.424803 0.212402 0.977182i \(-0.431872\pi\)
0.212402 + 0.977182i \(0.431872\pi\)
\(390\) 0 0
\(391\) 706.308 0.0913543
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −4133.12 −0.526481
\(396\) 0 0
\(397\) −13713.2 −1.73361 −0.866807 0.498644i \(-0.833831\pi\)
−0.866807 + 0.498644i \(0.833831\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 671.306 0.0835996 0.0417998 0.999126i \(-0.486691\pi\)
0.0417998 + 0.999126i \(0.486691\pi\)
\(402\) 0 0
\(403\) −2648.52 −0.327375
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6115.83 −0.744842
\(408\) 0 0
\(409\) 12957.4 1.56651 0.783253 0.621703i \(-0.213559\pi\)
0.783253 + 0.621703i \(0.213559\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5370.08 0.639817
\(414\) 0 0
\(415\) 5131.26 0.606949
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 14023.2 1.63503 0.817516 0.575906i \(-0.195351\pi\)
0.817516 + 0.575906i \(0.195351\pi\)
\(420\) 0 0
\(421\) −4825.76 −0.558653 −0.279326 0.960196i \(-0.590111\pi\)
−0.279326 + 0.960196i \(0.590111\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2889.39 0.329779
\(426\) 0 0
\(427\) −16206.7 −1.83676
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3901.30 0.436007 0.218003 0.975948i \(-0.430046\pi\)
0.218003 + 0.975948i \(0.430046\pi\)
\(432\) 0 0
\(433\) 1027.04 0.113987 0.0569933 0.998375i \(-0.481849\pi\)
0.0569933 + 0.998375i \(0.481849\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −396.057 −0.0433547
\(438\) 0 0
\(439\) 255.290 0.0277547 0.0138774 0.999904i \(-0.495583\pi\)
0.0138774 + 0.999904i \(0.495583\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6551.19 0.702611 0.351305 0.936261i \(-0.385738\pi\)
0.351305 + 0.936261i \(0.385738\pi\)
\(444\) 0 0
\(445\) −774.245 −0.0824780
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2364.38 0.248512 0.124256 0.992250i \(-0.460346\pi\)
0.124256 + 0.992250i \(0.460346\pi\)
\(450\) 0 0
\(451\) 8961.00 0.935603
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4631.01 −0.477154
\(456\) 0 0
\(457\) 4440.07 0.454481 0.227241 0.973839i \(-0.427030\pi\)
0.227241 + 0.973839i \(0.427030\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 891.518 0.0900697 0.0450349 0.998985i \(-0.485660\pi\)
0.0450349 + 0.998985i \(0.485660\pi\)
\(462\) 0 0
\(463\) 3294.85 0.330723 0.165361 0.986233i \(-0.447121\pi\)
0.165361 + 0.986233i \(0.447121\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1488.22 −0.147466 −0.0737329 0.997278i \(-0.523491\pi\)
−0.0737329 + 0.997278i \(0.523491\pi\)
\(468\) 0 0
\(469\) 2905.11 0.286025
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 413.657 0.0402114
\(474\) 0 0
\(475\) −1620.20 −0.156505
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −17534.7 −1.67261 −0.836304 0.548266i \(-0.815288\pi\)
−0.836304 + 0.548266i \(0.815288\pi\)
\(480\) 0 0
\(481\) −4501.84 −0.426749
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2070.20 −0.193821
\(486\) 0 0
\(487\) 10113.8 0.941067 0.470533 0.882382i \(-0.344062\pi\)
0.470533 + 0.882382i \(0.344062\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −17855.8 −1.64119 −0.820594 0.571512i \(-0.806357\pi\)
−0.820594 + 0.571512i \(0.806357\pi\)
\(492\) 0 0
\(493\) 25933.3 2.36912
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 21396.2 1.93109
\(498\) 0 0
\(499\) 2985.84 0.267865 0.133932 0.990990i \(-0.457240\pi\)
0.133932 + 0.990990i \(0.457240\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −2159.75 −0.191449 −0.0957243 0.995408i \(-0.530517\pi\)
−0.0957243 + 0.995408i \(0.530517\pi\)
\(504\) 0 0
\(505\) 8884.94 0.782920
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −16880.6 −1.46998 −0.734989 0.678079i \(-0.762813\pi\)
−0.734989 + 0.678079i \(0.762813\pi\)
\(510\) 0 0
\(511\) −21681.1 −1.87694
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3839.95 −0.328560
\(516\) 0 0
\(517\) −12505.1 −1.06378
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3915.76 −0.329276 −0.164638 0.986354i \(-0.552646\pi\)
−0.164638 + 0.986354i \(0.552646\pi\)
\(522\) 0 0
\(523\) 14478.8 1.21054 0.605271 0.796019i \(-0.293065\pi\)
0.605271 + 0.796019i \(0.293065\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6773.43 −0.559877
\(528\) 0 0
\(529\) −12129.7 −0.996930
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6596.16 0.536044
\(534\) 0 0
\(535\) −8244.99 −0.666285
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4729.83 0.377975
\(540\) 0 0
\(541\) −11827.6 −0.939940 −0.469970 0.882682i \(-0.655735\pi\)
−0.469970 + 0.882682i \(0.655735\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −4421.10 −0.347485
\(546\) 0 0
\(547\) 6446.22 0.503877 0.251938 0.967743i \(-0.418932\pi\)
0.251938 + 0.967743i \(0.418932\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −14541.9 −1.12433
\(552\) 0 0
\(553\) 16941.6 1.30277
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14419.5 1.09690 0.548451 0.836183i \(-0.315218\pi\)
0.548451 + 0.836183i \(0.315218\pi\)
\(558\) 0 0
\(559\) 304.492 0.0230387
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 817.038 0.0611617 0.0305808 0.999532i \(-0.490264\pi\)
0.0305808 + 0.999532i \(0.490264\pi\)
\(564\) 0 0
\(565\) −5694.24 −0.423998
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 16795.5 1.23744 0.618720 0.785612i \(-0.287652\pi\)
0.618720 + 0.785612i \(0.287652\pi\)
\(570\) 0 0
\(571\) −15342.6 −1.12447 −0.562233 0.826979i \(-0.690057\pi\)
−0.562233 + 0.826979i \(0.690057\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 152.781 0.0110807
\(576\) 0 0
\(577\) 1287.65 0.0929039 0.0464519 0.998921i \(-0.485209\pi\)
0.0464519 + 0.998921i \(0.485209\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −21032.9 −1.50188
\(582\) 0 0
\(583\) −16918.6 −1.20188
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2074.66 −0.145878 −0.0729391 0.997336i \(-0.523238\pi\)
−0.0729391 + 0.997336i \(0.523238\pi\)
\(588\) 0 0
\(589\) 3798.16 0.265705
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −16263.0 −1.12621 −0.563104 0.826386i \(-0.690393\pi\)
−0.563104 + 0.826386i \(0.690393\pi\)
\(594\) 0 0
\(595\) −11843.5 −0.816030
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −22423.7 −1.52956 −0.764780 0.644292i \(-0.777152\pi\)
−0.764780 + 0.644292i \(0.777152\pi\)
\(600\) 0 0
\(601\) −2915.58 −0.197885 −0.0989424 0.995093i \(-0.531546\pi\)
−0.0989424 + 0.995093i \(0.531546\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −12191.0 −0.819234
\(606\) 0 0
\(607\) −11897.3 −0.795546 −0.397773 0.917484i \(-0.630217\pi\)
−0.397773 + 0.917484i \(0.630217\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −9204.98 −0.609482
\(612\) 0 0
\(613\) −22791.7 −1.50171 −0.750856 0.660466i \(-0.770359\pi\)
−0.750856 + 0.660466i \(0.770359\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −11894.0 −0.776071 −0.388036 0.921644i \(-0.626846\pi\)
−0.388036 + 0.921644i \(0.626846\pi\)
\(618\) 0 0
\(619\) −15567.8 −1.01086 −0.505431 0.862867i \(-0.668667\pi\)
−0.505431 + 0.862867i \(0.668667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3173.61 0.204090
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −11513.2 −0.729828
\(630\) 0 0
\(631\) −23681.8 −1.49407 −0.747034 0.664786i \(-0.768523\pi\)
−0.747034 + 0.664786i \(0.768523\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8508.02 0.531701
\(636\) 0 0
\(637\) 3481.62 0.216557
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −21351.6 −1.31566 −0.657831 0.753166i \(-0.728526\pi\)
−0.657831 + 0.753166i \(0.728526\pi\)
\(642\) 0 0
\(643\) 7196.04 0.441344 0.220672 0.975348i \(-0.429175\pi\)
0.220672 + 0.975348i \(0.429175\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 20897.9 1.26983 0.634915 0.772582i \(-0.281035\pi\)
0.634915 + 0.772582i \(0.281035\pi\)
\(648\) 0 0
\(649\) 16086.4 0.972956
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8655.43 −0.518703 −0.259352 0.965783i \(-0.583509\pi\)
−0.259352 + 0.965783i \(0.583509\pi\)
\(654\) 0 0
\(655\) 7704.93 0.459628
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 13004.3 0.768705 0.384352 0.923186i \(-0.374425\pi\)
0.384352 + 0.923186i \(0.374425\pi\)
\(660\) 0 0
\(661\) −19135.2 −1.12598 −0.562991 0.826463i \(-0.690349\pi\)
−0.562991 + 0.826463i \(0.690349\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6641.18 0.387269
\(666\) 0 0
\(667\) 1371.26 0.0796033
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −48548.3 −2.79312
\(672\) 0 0
\(673\) 24101.3 1.38044 0.690221 0.723599i \(-0.257513\pi\)
0.690221 + 0.723599i \(0.257513\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −17892.9 −1.01577 −0.507887 0.861424i \(-0.669573\pi\)
−0.507887 + 0.861424i \(0.669573\pi\)
\(678\) 0 0
\(679\) 8485.72 0.479606
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −27545.4 −1.54319 −0.771593 0.636117i \(-0.780540\pi\)
−0.771593 + 0.636117i \(0.780540\pi\)
\(684\) 0 0
\(685\) −6957.67 −0.388086
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −12453.8 −0.688608
\(690\) 0 0
\(691\) −11360.1 −0.625408 −0.312704 0.949851i \(-0.601235\pi\)
−0.312704 + 0.949851i \(0.601235\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 783.245 0.0427485
\(696\) 0 0
\(697\) 16869.3 0.916744
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 148.008 0.00797459 0.00398729 0.999992i \(-0.498731\pi\)
0.00398729 + 0.999992i \(0.498731\pi\)
\(702\) 0 0
\(703\) 6455.95 0.346360
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −36419.2 −1.93732
\(708\) 0 0
\(709\) 2401.61 0.127213 0.0636067 0.997975i \(-0.479740\pi\)
0.0636067 + 0.997975i \(0.479740\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −358.155 −0.0188121
\(714\) 0 0
\(715\) −13872.5 −0.725598
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 13003.4 0.674472 0.337236 0.941420i \(-0.390508\pi\)
0.337236 + 0.941420i \(0.390508\pi\)
\(720\) 0 0
\(721\) 15739.9 0.813016
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5609.59 0.287359
\(726\) 0 0
\(727\) 36506.5 1.86238 0.931190 0.364533i \(-0.118771\pi\)
0.931190 + 0.364533i \(0.118771\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 778.720 0.0394008
\(732\) 0 0
\(733\) −18661.5 −0.940350 −0.470175 0.882573i \(-0.655809\pi\)
−0.470175 + 0.882573i \(0.655809\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8702.46 0.434951
\(738\) 0 0
\(739\) 27675.0 1.37759 0.688797 0.724954i \(-0.258139\pi\)
0.688797 + 0.724954i \(0.258139\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 17622.0 0.870103 0.435052 0.900406i \(-0.356730\pi\)
0.435052 + 0.900406i \(0.356730\pi\)
\(744\) 0 0
\(745\) 1071.22 0.0526800
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 33796.1 1.64871
\(750\) 0 0
\(751\) −34581.0 −1.68027 −0.840133 0.542381i \(-0.817523\pi\)
−0.840133 + 0.542381i \(0.817523\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −175.255 −0.00844793
\(756\) 0 0
\(757\) 33994.4 1.63216 0.816082 0.577936i \(-0.196142\pi\)
0.816082 + 0.577936i \(0.196142\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 34917.8 1.66330 0.831649 0.555302i \(-0.187397\pi\)
0.831649 + 0.555302i \(0.187397\pi\)
\(762\) 0 0
\(763\) 18122.0 0.859844
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 11841.2 0.557445
\(768\) 0 0
\(769\) −20714.9 −0.971388 −0.485694 0.874129i \(-0.661433\pi\)
−0.485694 + 0.874129i \(0.661433\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 12461.4 0.579826 0.289913 0.957053i \(-0.406374\pi\)
0.289913 + 0.957053i \(0.406374\pi\)
\(774\) 0 0
\(775\) −1465.15 −0.0679095
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −9459.35 −0.435066
\(780\) 0 0
\(781\) 64093.8 2.93657
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1747.96 −0.0794743
\(786\) 0 0
\(787\) 32821.0 1.48658 0.743292 0.668967i \(-0.233263\pi\)
0.743292 + 0.668967i \(0.233263\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 23340.6 1.04917
\(792\) 0 0
\(793\) −35736.2 −1.60029
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −7777.06 −0.345643 −0.172822 0.984953i \(-0.555288\pi\)
−0.172822 + 0.984953i \(0.555288\pi\)
\(798\) 0 0
\(799\) −23541.2 −1.04234
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −64947.2 −2.85422
\(804\) 0 0
\(805\) −626.245 −0.0274189
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −20407.4 −0.886880 −0.443440 0.896304i \(-0.646242\pi\)
−0.443440 + 0.896304i \(0.646242\pi\)
\(810\) 0 0
\(811\) −25876.6 −1.12041 −0.560205 0.828354i \(-0.689277\pi\)
−0.560205 + 0.828354i \(0.689277\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −10145.2 −0.436038
\(816\) 0 0
\(817\) −436.662 −0.0186987
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1100.58 −0.0467850 −0.0233925 0.999726i \(-0.507447\pi\)
−0.0233925 + 0.999726i \(0.507447\pi\)
\(822\) 0 0
\(823\) −36245.7 −1.53517 −0.767585 0.640948i \(-0.778542\pi\)
−0.767585 + 0.640948i \(0.778542\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1996.72 −0.0839572 −0.0419786 0.999119i \(-0.513366\pi\)
−0.0419786 + 0.999119i \(0.513366\pi\)
\(828\) 0 0
\(829\) 43393.8 1.81801 0.909004 0.416788i \(-0.136844\pi\)
0.909004 + 0.416788i \(0.136844\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 8904.03 0.370356
\(834\) 0 0
\(835\) −1073.10 −0.0444743
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 3424.53 0.140915 0.0704576 0.997515i \(-0.477554\pi\)
0.0704576 + 0.997515i \(0.477554\pi\)
\(840\) 0 0
\(841\) 25959.0 1.06437
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 773.490 0.0314898
\(846\) 0 0
\(847\) 49970.8 2.02718
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −608.778 −0.0245225
\(852\) 0 0
\(853\) −5173.63 −0.207669 −0.103835 0.994595i \(-0.533111\pi\)
−0.103835 + 0.994595i \(0.533111\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −28323.8 −1.12896 −0.564482 0.825445i \(-0.690924\pi\)
−0.564482 + 0.825445i \(0.690924\pi\)
\(858\) 0 0
\(859\) −42970.7 −1.70680 −0.853401 0.521255i \(-0.825464\pi\)
−0.853401 + 0.521255i \(0.825464\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −12664.1 −0.499527 −0.249764 0.968307i \(-0.580353\pi\)
−0.249764 + 0.968307i \(0.580353\pi\)
\(864\) 0 0
\(865\) 17124.9 0.673139
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 50749.7 1.98109
\(870\) 0 0
\(871\) 6405.85 0.249201
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2561.86 −0.0989791
\(876\) 0 0
\(877\) −7403.14 −0.285047 −0.142524 0.989791i \(-0.545522\pi\)
−0.142524 + 0.989791i \(0.545522\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 5691.74 0.217661 0.108831 0.994060i \(-0.465289\pi\)
0.108831 + 0.994060i \(0.465289\pi\)
\(882\) 0 0
\(883\) −13915.1 −0.530329 −0.265164 0.964203i \(-0.585426\pi\)
−0.265164 + 0.964203i \(0.585426\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 35631.2 1.34879 0.674396 0.738370i \(-0.264404\pi\)
0.674396 + 0.738370i \(0.264404\pi\)
\(888\) 0 0
\(889\) −34874.2 −1.31568
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 13200.6 0.494670
\(894\) 0 0
\(895\) −10150.5 −0.379100
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −13150.3 −0.487859
\(900\) 0 0
\(901\) −31849.8 −1.17766
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1020.69 −0.0374906
\(906\) 0 0
\(907\) 22734.4 0.832285 0.416143 0.909299i \(-0.363382\pi\)
0.416143 + 0.909299i \(0.363382\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −32714.8 −1.18978 −0.594890 0.803807i \(-0.702805\pi\)
−0.594890 + 0.803807i \(0.702805\pi\)
\(912\) 0 0
\(913\) −63005.6 −2.28388
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −31582.3 −1.13734
\(918\) 0 0
\(919\) 41077.0 1.47443 0.737217 0.675656i \(-0.236139\pi\)
0.737217 + 0.675656i \(0.236139\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 47179.3 1.68247
\(924\) 0 0
\(925\) −2490.41 −0.0885234
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −27678.8 −0.977515 −0.488758 0.872420i \(-0.662550\pi\)
−0.488758 + 0.872420i \(0.662550\pi\)
\(930\) 0 0
\(931\) −4992.87 −0.175762
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −35478.1 −1.24092
\(936\) 0 0
\(937\) −17120.7 −0.596915 −0.298457 0.954423i \(-0.596472\pi\)
−0.298457 + 0.954423i \(0.596472\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 30687.2 1.06310 0.531549 0.847028i \(-0.321610\pi\)
0.531549 + 0.847028i \(0.321610\pi\)
\(942\) 0 0
\(943\) 891.989 0.0308029
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 36649.9 1.25761 0.628807 0.777561i \(-0.283544\pi\)
0.628807 + 0.777561i \(0.283544\pi\)
\(948\) 0 0
\(949\) −47807.4 −1.63529
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −23768.8 −0.807919 −0.403959 0.914777i \(-0.632366\pi\)
−0.403959 + 0.914777i \(0.632366\pi\)
\(954\) 0 0
\(955\) −3086.77 −0.104592
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 28519.4 0.960311
\(960\) 0 0
\(961\) −26356.3 −0.884708
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −15356.7 −0.512278
\(966\) 0 0
\(967\) −36241.8 −1.20523 −0.602615 0.798032i \(-0.705875\pi\)
−0.602615 + 0.798032i \(0.705875\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −16837.4 −0.556476 −0.278238 0.960512i \(-0.589750\pi\)
−0.278238 + 0.960512i \(0.589750\pi\)
\(972\) 0 0
\(973\) −3210.51 −0.105780
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 26322.4 0.861954 0.430977 0.902363i \(-0.358169\pi\)
0.430977 + 0.902363i \(0.358169\pi\)
\(978\) 0 0
\(979\) 9506.78 0.310355
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 42438.7 1.37699 0.688497 0.725240i \(-0.258271\pi\)
0.688497 + 0.725240i \(0.258271\pi\)
\(984\) 0 0
\(985\) −4060.49 −0.131348
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 41.1760 0.00132388
\(990\) 0 0
\(991\) −17890.3 −0.573464 −0.286732 0.958011i \(-0.592569\pi\)
−0.286732 + 0.958011i \(0.592569\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5329.67 0.169811
\(996\) 0 0
\(997\) 16189.9 0.514283 0.257142 0.966374i \(-0.417219\pi\)
0.257142 + 0.966374i \(0.417219\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1440.4.a.t.1.2 2
3.2 odd 2 160.4.a.c.1.1 2
4.3 odd 2 1440.4.a.x.1.1 2
12.11 even 2 160.4.a.g.1.2 yes 2
15.2 even 4 800.4.c.i.449.4 4
15.8 even 4 800.4.c.i.449.1 4
15.14 odd 2 800.4.a.s.1.2 2
24.5 odd 2 320.4.a.s.1.2 2
24.11 even 2 320.4.a.o.1.1 2
48.5 odd 4 1280.4.d.x.641.4 4
48.11 even 4 1280.4.d.q.641.1 4
48.29 odd 4 1280.4.d.x.641.1 4
48.35 even 4 1280.4.d.q.641.4 4
60.23 odd 4 800.4.c.k.449.4 4
60.47 odd 4 800.4.c.k.449.1 4
60.59 even 2 800.4.a.m.1.1 2
120.29 odd 2 1600.4.a.cd.1.1 2
120.59 even 2 1600.4.a.cn.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.4.a.c.1.1 2 3.2 odd 2
160.4.a.g.1.2 yes 2 12.11 even 2
320.4.a.o.1.1 2 24.11 even 2
320.4.a.s.1.2 2 24.5 odd 2
800.4.a.m.1.1 2 60.59 even 2
800.4.a.s.1.2 2 15.14 odd 2
800.4.c.i.449.1 4 15.8 even 4
800.4.c.i.449.4 4 15.2 even 4
800.4.c.k.449.1 4 60.47 odd 4
800.4.c.k.449.4 4 60.23 odd 4
1280.4.d.q.641.1 4 48.11 even 4
1280.4.d.q.641.4 4 48.35 even 4
1280.4.d.x.641.1 4 48.29 odd 4
1280.4.d.x.641.4 4 48.5 odd 4
1440.4.a.t.1.2 2 1.1 even 1 trivial
1440.4.a.x.1.1 2 4.3 odd 2
1600.4.a.cd.1.1 2 120.29 odd 2
1600.4.a.cn.1.2 2 120.59 even 2