Properties

Label 160.4.a.c.1.1
Level $160$
Weight $4$
Character 160.1
Self dual yes
Analytic conductor $9.440$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,4,Mod(1,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 160.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.44030560092\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.44949\) of defining polynomial
Character \(\chi\) \(=\) 160.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.89898 q^{3} +5.00000 q^{5} +20.4949 q^{7} +52.1918 q^{9} -61.3939 q^{11} +45.1918 q^{13} -44.4949 q^{15} -115.576 q^{17} -64.8082 q^{19} -182.384 q^{21} -6.11123 q^{23} +25.0000 q^{25} -224.182 q^{27} -224.384 q^{29} -58.6061 q^{31} +546.343 q^{33} +102.474 q^{35} -99.6163 q^{37} -402.161 q^{39} -145.959 q^{41} +6.73776 q^{43} +260.959 q^{45} +203.687 q^{47} +77.0408 q^{49} +1028.50 q^{51} +275.576 q^{53} -306.969 q^{55} +576.727 q^{57} -262.020 q^{59} -790.767 q^{61} +1069.67 q^{63} +225.959 q^{65} +141.748 q^{67} +54.3837 q^{69} -1043.98 q^{71} -1057.88 q^{73} -222.474 q^{75} -1258.26 q^{77} +826.624 q^{79} +585.808 q^{81} +1026.25 q^{83} -577.878 q^{85} +1996.79 q^{87} -154.849 q^{89} +926.202 q^{91} +521.535 q^{93} -324.041 q^{95} +414.041 q^{97} -3204.26 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{3} + 10 q^{5} - 8 q^{7} + 26 q^{9} - 64 q^{11} + 12 q^{13} - 40 q^{15} + 4 q^{17} - 208 q^{19} - 208 q^{21} - 120 q^{23} + 50 q^{25} - 272 q^{27} - 292 q^{29} - 176 q^{31} + 544 q^{33} - 40 q^{35}+ \cdots - 3136 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −8.89898 −1.71261 −0.856305 0.516471i \(-0.827245\pi\)
−0.856305 + 0.516471i \(0.827245\pi\)
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 20.4949 1.10662 0.553310 0.832975i \(-0.313364\pi\)
0.553310 + 0.832975i \(0.313364\pi\)
\(8\) 0 0
\(9\) 52.1918 1.93303
\(10\) 0 0
\(11\) −61.3939 −1.68281 −0.841407 0.540402i \(-0.818272\pi\)
−0.841407 + 0.540402i \(0.818272\pi\)
\(12\) 0 0
\(13\) 45.1918 0.964151 0.482075 0.876130i \(-0.339883\pi\)
0.482075 + 0.876130i \(0.339883\pi\)
\(14\) 0 0
\(15\) −44.4949 −0.765902
\(16\) 0 0
\(17\) −115.576 −1.64889 −0.824446 0.565940i \(-0.808513\pi\)
−0.824446 + 0.565940i \(0.808513\pi\)
\(18\) 0 0
\(19\) −64.8082 −0.782527 −0.391263 0.920279i \(-0.627962\pi\)
−0.391263 + 0.920279i \(0.627962\pi\)
\(20\) 0 0
\(21\) −182.384 −1.89521
\(22\) 0 0
\(23\) −6.11123 −0.0554034 −0.0277017 0.999616i \(-0.508819\pi\)
−0.0277017 + 0.999616i \(0.508819\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −224.182 −1.59792
\(28\) 0 0
\(29\) −224.384 −1.43679 −0.718397 0.695634i \(-0.755124\pi\)
−0.718397 + 0.695634i \(0.755124\pi\)
\(30\) 0 0
\(31\) −58.6061 −0.339547 −0.169774 0.985483i \(-0.554304\pi\)
−0.169774 + 0.985483i \(0.554304\pi\)
\(32\) 0 0
\(33\) 546.343 2.88200
\(34\) 0 0
\(35\) 102.474 0.494896
\(36\) 0 0
\(37\) −99.6163 −0.442617 −0.221308 0.975204i \(-0.571033\pi\)
−0.221308 + 0.975204i \(0.571033\pi\)
\(38\) 0 0
\(39\) −402.161 −1.65121
\(40\) 0 0
\(41\) −145.959 −0.555975 −0.277988 0.960585i \(-0.589667\pi\)
−0.277988 + 0.960585i \(0.589667\pi\)
\(42\) 0 0
\(43\) 6.73776 0.0238953 0.0119477 0.999929i \(-0.496197\pi\)
0.0119477 + 0.999929i \(0.496197\pi\)
\(44\) 0 0
\(45\) 260.959 0.864478
\(46\) 0 0
\(47\) 203.687 0.632144 0.316072 0.948735i \(-0.397636\pi\)
0.316072 + 0.948735i \(0.397636\pi\)
\(48\) 0 0
\(49\) 77.0408 0.224609
\(50\) 0 0
\(51\) 1028.50 2.82391
\(52\) 0 0
\(53\) 275.576 0.714211 0.357106 0.934064i \(-0.383764\pi\)
0.357106 + 0.934064i \(0.383764\pi\)
\(54\) 0 0
\(55\) −306.969 −0.752577
\(56\) 0 0
\(57\) 576.727 1.34016
\(58\) 0 0
\(59\) −262.020 −0.578172 −0.289086 0.957303i \(-0.593351\pi\)
−0.289086 + 0.957303i \(0.593351\pi\)
\(60\) 0 0
\(61\) −790.767 −1.65979 −0.829897 0.557917i \(-0.811601\pi\)
−0.829897 + 0.557917i \(0.811601\pi\)
\(62\) 0 0
\(63\) 1069.67 2.13913
\(64\) 0 0
\(65\) 225.959 0.431181
\(66\) 0 0
\(67\) 141.748 0.258467 0.129233 0.991614i \(-0.458748\pi\)
0.129233 + 0.991614i \(0.458748\pi\)
\(68\) 0 0
\(69\) 54.3837 0.0948844
\(70\) 0 0
\(71\) −1043.98 −1.74503 −0.872516 0.488585i \(-0.837513\pi\)
−0.872516 + 0.488585i \(0.837513\pi\)
\(72\) 0 0
\(73\) −1057.88 −1.69610 −0.848049 0.529917i \(-0.822223\pi\)
−0.848049 + 0.529917i \(0.822223\pi\)
\(74\) 0 0
\(75\) −222.474 −0.342522
\(76\) 0 0
\(77\) −1258.26 −1.86224
\(78\) 0 0
\(79\) 826.624 1.17725 0.588624 0.808407i \(-0.299670\pi\)
0.588624 + 0.808407i \(0.299670\pi\)
\(80\) 0 0
\(81\) 585.808 0.803578
\(82\) 0 0
\(83\) 1026.25 1.35718 0.678589 0.734518i \(-0.262592\pi\)
0.678589 + 0.734518i \(0.262592\pi\)
\(84\) 0 0
\(85\) −577.878 −0.737407
\(86\) 0 0
\(87\) 1996.79 2.46067
\(88\) 0 0
\(89\) −154.849 −0.184427 −0.0922133 0.995739i \(-0.529394\pi\)
−0.0922133 + 0.995739i \(0.529394\pi\)
\(90\) 0 0
\(91\) 926.202 1.06695
\(92\) 0 0
\(93\) 521.535 0.581512
\(94\) 0 0
\(95\) −324.041 −0.349957
\(96\) 0 0
\(97\) 414.041 0.433397 0.216698 0.976239i \(-0.430471\pi\)
0.216698 + 0.976239i \(0.430471\pi\)
\(98\) 0 0
\(99\) −3204.26 −3.25293
\(100\) 0 0
\(101\) 1776.99 1.75066 0.875331 0.483524i \(-0.160643\pi\)
0.875331 + 0.483524i \(0.160643\pi\)
\(102\) 0 0
\(103\) 767.991 0.734683 0.367342 0.930086i \(-0.380268\pi\)
0.367342 + 0.930086i \(0.380268\pi\)
\(104\) 0 0
\(105\) −911.918 −0.847563
\(106\) 0 0
\(107\) −1649.00 −1.48986 −0.744929 0.667144i \(-0.767517\pi\)
−0.744929 + 0.667144i \(0.767517\pi\)
\(108\) 0 0
\(109\) 884.220 0.777000 0.388500 0.921449i \(-0.372993\pi\)
0.388500 + 0.921449i \(0.372993\pi\)
\(110\) 0 0
\(111\) 886.484 0.758030
\(112\) 0 0
\(113\) −1138.85 −0.948088 −0.474044 0.880501i \(-0.657206\pi\)
−0.474044 + 0.880501i \(0.657206\pi\)
\(114\) 0 0
\(115\) −30.5561 −0.0247772
\(116\) 0 0
\(117\) 2358.64 1.86373
\(118\) 0 0
\(119\) −2368.71 −1.82470
\(120\) 0 0
\(121\) 2438.21 1.83186
\(122\) 0 0
\(123\) 1298.89 0.952169
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −1701.60 −1.18892 −0.594460 0.804125i \(-0.702634\pi\)
−0.594460 + 0.804125i \(0.702634\pi\)
\(128\) 0 0
\(129\) −59.9592 −0.0409233
\(130\) 0 0
\(131\) 1540.99 1.02776 0.513880 0.857862i \(-0.328208\pi\)
0.513880 + 0.857862i \(0.328208\pi\)
\(132\) 0 0
\(133\) −1328.24 −0.865960
\(134\) 0 0
\(135\) −1120.91 −0.714610
\(136\) 0 0
\(137\) −1391.53 −0.867787 −0.433894 0.900964i \(-0.642861\pi\)
−0.433894 + 0.900964i \(0.642861\pi\)
\(138\) 0 0
\(139\) −156.649 −0.0955885 −0.0477942 0.998857i \(-0.515219\pi\)
−0.0477942 + 0.998857i \(0.515219\pi\)
\(140\) 0 0
\(141\) −1812.60 −1.08262
\(142\) 0 0
\(143\) −2774.50 −1.62249
\(144\) 0 0
\(145\) −1121.92 −0.642553
\(146\) 0 0
\(147\) −685.585 −0.384667
\(148\) 0 0
\(149\) 214.245 0.117796 0.0588981 0.998264i \(-0.481241\pi\)
0.0588981 + 0.998264i \(0.481241\pi\)
\(150\) 0 0
\(151\) 35.0510 0.0188901 0.00944507 0.999955i \(-0.496993\pi\)
0.00944507 + 0.999955i \(0.496993\pi\)
\(152\) 0 0
\(153\) −6032.10 −3.18736
\(154\) 0 0
\(155\) −293.031 −0.151850
\(156\) 0 0
\(157\) 349.592 0.177710 0.0888550 0.996045i \(-0.471679\pi\)
0.0888550 + 0.996045i \(0.471679\pi\)
\(158\) 0 0
\(159\) −2452.34 −1.22317
\(160\) 0 0
\(161\) −125.249 −0.0613106
\(162\) 0 0
\(163\) 2029.04 0.975010 0.487505 0.873120i \(-0.337907\pi\)
0.487505 + 0.873120i \(0.337907\pi\)
\(164\) 0 0
\(165\) 2731.71 1.28887
\(166\) 0 0
\(167\) −214.619 −0.0994476 −0.0497238 0.998763i \(-0.515834\pi\)
−0.0497238 + 0.998763i \(0.515834\pi\)
\(168\) 0 0
\(169\) −154.698 −0.0704133
\(170\) 0 0
\(171\) −3382.46 −1.51265
\(172\) 0 0
\(173\) 3424.99 1.50518 0.752592 0.658487i \(-0.228803\pi\)
0.752592 + 0.658487i \(0.228803\pi\)
\(174\) 0 0
\(175\) 512.372 0.221324
\(176\) 0 0
\(177\) 2331.71 0.990183
\(178\) 0 0
\(179\) −2030.10 −0.847692 −0.423846 0.905734i \(-0.639320\pi\)
−0.423846 + 0.905734i \(0.639320\pi\)
\(180\) 0 0
\(181\) 204.139 0.0838316 0.0419158 0.999121i \(-0.486654\pi\)
0.0419158 + 0.999121i \(0.486654\pi\)
\(182\) 0 0
\(183\) 7037.02 2.84258
\(184\) 0 0
\(185\) −498.082 −0.197944
\(186\) 0 0
\(187\) 7095.63 2.77478
\(188\) 0 0
\(189\) −4594.58 −1.76829
\(190\) 0 0
\(191\) −617.353 −0.233875 −0.116937 0.993139i \(-0.537308\pi\)
−0.116937 + 0.993139i \(0.537308\pi\)
\(192\) 0 0
\(193\) 3071.33 1.14549 0.572744 0.819734i \(-0.305879\pi\)
0.572744 + 0.819734i \(0.305879\pi\)
\(194\) 0 0
\(195\) −2010.81 −0.738445
\(196\) 0 0
\(197\) −812.098 −0.293703 −0.146852 0.989159i \(-0.546914\pi\)
−0.146852 + 0.989159i \(0.546914\pi\)
\(198\) 0 0
\(199\) −1065.93 −0.379709 −0.189855 0.981812i \(-0.560802\pi\)
−0.189855 + 0.981812i \(0.560802\pi\)
\(200\) 0 0
\(201\) −1261.41 −0.442653
\(202\) 0 0
\(203\) −4598.72 −1.58998
\(204\) 0 0
\(205\) −729.796 −0.248640
\(206\) 0 0
\(207\) −318.956 −0.107097
\(208\) 0 0
\(209\) 3978.82 1.31685
\(210\) 0 0
\(211\) −1222.24 −0.398779 −0.199390 0.979920i \(-0.563896\pi\)
−0.199390 + 0.979920i \(0.563896\pi\)
\(212\) 0 0
\(213\) 9290.33 2.98856
\(214\) 0 0
\(215\) 33.6888 0.0106863
\(216\) 0 0
\(217\) −1201.13 −0.375750
\(218\) 0 0
\(219\) 9414.03 2.90475
\(220\) 0 0
\(221\) −5223.07 −1.58978
\(222\) 0 0
\(223\) 414.374 0.124433 0.0622165 0.998063i \(-0.480183\pi\)
0.0622165 + 0.998063i \(0.480183\pi\)
\(224\) 0 0
\(225\) 1304.80 0.386606
\(226\) 0 0
\(227\) −2293.88 −0.670707 −0.335353 0.942092i \(-0.608856\pi\)
−0.335353 + 0.942092i \(0.608856\pi\)
\(228\) 0 0
\(229\) 3214.72 0.927662 0.463831 0.885924i \(-0.346475\pi\)
0.463831 + 0.885924i \(0.346475\pi\)
\(230\) 0 0
\(231\) 11197.2 3.18928
\(232\) 0 0
\(233\) 3598.60 1.01181 0.505905 0.862589i \(-0.331159\pi\)
0.505905 + 0.862589i \(0.331159\pi\)
\(234\) 0 0
\(235\) 1018.43 0.282703
\(236\) 0 0
\(237\) −7356.11 −2.01616
\(238\) 0 0
\(239\) 2462.58 0.666491 0.333245 0.942840i \(-0.391856\pi\)
0.333245 + 0.942840i \(0.391856\pi\)
\(240\) 0 0
\(241\) 4153.27 1.11011 0.555054 0.831815i \(-0.312698\pi\)
0.555054 + 0.831815i \(0.312698\pi\)
\(242\) 0 0
\(243\) 839.809 0.221703
\(244\) 0 0
\(245\) 385.204 0.100448
\(246\) 0 0
\(247\) −2928.80 −0.754474
\(248\) 0 0
\(249\) −9132.60 −2.32432
\(250\) 0 0
\(251\) −1335.26 −0.335779 −0.167890 0.985806i \(-0.553695\pi\)
−0.167890 + 0.985806i \(0.553695\pi\)
\(252\) 0 0
\(253\) 375.192 0.0932336
\(254\) 0 0
\(255\) 5142.52 1.26289
\(256\) 0 0
\(257\) −530.359 −0.128727 −0.0643636 0.997927i \(-0.520502\pi\)
−0.0643636 + 0.997927i \(0.520502\pi\)
\(258\) 0 0
\(259\) −2041.63 −0.489809
\(260\) 0 0
\(261\) −11711.0 −2.77737
\(262\) 0 0
\(263\) −2234.23 −0.523836 −0.261918 0.965090i \(-0.584355\pi\)
−0.261918 + 0.965090i \(0.584355\pi\)
\(264\) 0 0
\(265\) 1377.88 0.319405
\(266\) 0 0
\(267\) 1378.00 0.315851
\(268\) 0 0
\(269\) 5096.09 1.15507 0.577535 0.816366i \(-0.304015\pi\)
0.577535 + 0.816366i \(0.304015\pi\)
\(270\) 0 0
\(271\) 1353.39 0.303367 0.151684 0.988429i \(-0.451530\pi\)
0.151684 + 0.988429i \(0.451530\pi\)
\(272\) 0 0
\(273\) −8242.25 −1.82727
\(274\) 0 0
\(275\) −1534.85 −0.336563
\(276\) 0 0
\(277\) −8879.57 −1.92607 −0.963035 0.269376i \(-0.913183\pi\)
−0.963035 + 0.269376i \(0.913183\pi\)
\(278\) 0 0
\(279\) −3058.76 −0.656356
\(280\) 0 0
\(281\) −1145.55 −0.243195 −0.121598 0.992579i \(-0.538802\pi\)
−0.121598 + 0.992579i \(0.538802\pi\)
\(282\) 0 0
\(283\) 385.399 0.0809526 0.0404763 0.999180i \(-0.487112\pi\)
0.0404763 + 0.999180i \(0.487112\pi\)
\(284\) 0 0
\(285\) 2883.63 0.599339
\(286\) 0 0
\(287\) −2991.42 −0.615254
\(288\) 0 0
\(289\) 8444.70 1.71885
\(290\) 0 0
\(291\) −3684.54 −0.742239
\(292\) 0 0
\(293\) 3812.30 0.760126 0.380063 0.924961i \(-0.375902\pi\)
0.380063 + 0.924961i \(0.375902\pi\)
\(294\) 0 0
\(295\) −1310.10 −0.258566
\(296\) 0 0
\(297\) 13763.4 2.68900
\(298\) 0 0
\(299\) −276.178 −0.0534172
\(300\) 0 0
\(301\) 138.090 0.0264430
\(302\) 0 0
\(303\) −15813.4 −2.99820
\(304\) 0 0
\(305\) −3953.84 −0.742282
\(306\) 0 0
\(307\) 6897.45 1.28228 0.641138 0.767426i \(-0.278463\pi\)
0.641138 + 0.767426i \(0.278463\pi\)
\(308\) 0 0
\(309\) −6834.33 −1.25823
\(310\) 0 0
\(311\) −8125.39 −1.48151 −0.740753 0.671778i \(-0.765531\pi\)
−0.740753 + 0.671778i \(0.765531\pi\)
\(312\) 0 0
\(313\) 2052.66 0.370681 0.185341 0.982674i \(-0.440661\pi\)
0.185341 + 0.982674i \(0.440661\pi\)
\(314\) 0 0
\(315\) 5348.33 0.956649
\(316\) 0 0
\(317\) 4175.12 0.739741 0.369871 0.929083i \(-0.379402\pi\)
0.369871 + 0.929083i \(0.379402\pi\)
\(318\) 0 0
\(319\) 13775.8 2.41786
\(320\) 0 0
\(321\) 14674.4 2.55154
\(322\) 0 0
\(323\) 7490.24 1.29030
\(324\) 0 0
\(325\) 1129.80 0.192830
\(326\) 0 0
\(327\) −7868.66 −1.33070
\(328\) 0 0
\(329\) 4174.54 0.699543
\(330\) 0 0
\(331\) −11738.2 −1.94921 −0.974607 0.223923i \(-0.928114\pi\)
−0.974607 + 0.223923i \(0.928114\pi\)
\(332\) 0 0
\(333\) −5199.16 −0.855592
\(334\) 0 0
\(335\) 708.740 0.115590
\(336\) 0 0
\(337\) −1698.85 −0.274606 −0.137303 0.990529i \(-0.543843\pi\)
−0.137303 + 0.990529i \(0.543843\pi\)
\(338\) 0 0
\(339\) 10134.6 1.62370
\(340\) 0 0
\(341\) 3598.06 0.571395
\(342\) 0 0
\(343\) −5450.81 −0.858064
\(344\) 0 0
\(345\) 271.918 0.0424336
\(346\) 0 0
\(347\) −9682.53 −1.49794 −0.748970 0.662604i \(-0.769451\pi\)
−0.748970 + 0.662604i \(0.769451\pi\)
\(348\) 0 0
\(349\) −10755.1 −1.64959 −0.824796 0.565430i \(-0.808710\pi\)
−0.824796 + 0.565430i \(0.808710\pi\)
\(350\) 0 0
\(351\) −10131.2 −1.54063
\(352\) 0 0
\(353\) −7044.94 −1.06222 −0.531111 0.847302i \(-0.678225\pi\)
−0.531111 + 0.847302i \(0.678225\pi\)
\(354\) 0 0
\(355\) −5219.89 −0.780402
\(356\) 0 0
\(357\) 21079.1 3.12500
\(358\) 0 0
\(359\) −805.576 −0.118431 −0.0592154 0.998245i \(-0.518860\pi\)
−0.0592154 + 0.998245i \(0.518860\pi\)
\(360\) 0 0
\(361\) −2658.90 −0.387652
\(362\) 0 0
\(363\) −21697.6 −3.13726
\(364\) 0 0
\(365\) −5289.39 −0.758518
\(366\) 0 0
\(367\) 11157.2 1.58692 0.793460 0.608623i \(-0.208278\pi\)
0.793460 + 0.608623i \(0.208278\pi\)
\(368\) 0 0
\(369\) −7617.88 −1.07472
\(370\) 0 0
\(371\) 5647.89 0.790361
\(372\) 0 0
\(373\) −4634.24 −0.643303 −0.321652 0.946858i \(-0.604238\pi\)
−0.321652 + 0.946858i \(0.604238\pi\)
\(374\) 0 0
\(375\) −1112.37 −0.153180
\(376\) 0 0
\(377\) −10140.3 −1.38529
\(378\) 0 0
\(379\) 754.678 0.102283 0.0511414 0.998691i \(-0.483714\pi\)
0.0511414 + 0.998691i \(0.483714\pi\)
\(380\) 0 0
\(381\) 15142.5 2.03616
\(382\) 0 0
\(383\) 984.709 0.131374 0.0656871 0.997840i \(-0.479076\pi\)
0.0656871 + 0.997840i \(0.479076\pi\)
\(384\) 0 0
\(385\) −6291.31 −0.832817
\(386\) 0 0
\(387\) 351.656 0.0461904
\(388\) 0 0
\(389\) −3259.21 −0.424803 −0.212402 0.977182i \(-0.568128\pi\)
−0.212402 + 0.977182i \(0.568128\pi\)
\(390\) 0 0
\(391\) 706.308 0.0913543
\(392\) 0 0
\(393\) −13713.2 −1.76015
\(394\) 0 0
\(395\) 4133.12 0.526481
\(396\) 0 0
\(397\) −13713.2 −1.73361 −0.866807 0.498644i \(-0.833831\pi\)
−0.866807 + 0.498644i \(0.833831\pi\)
\(398\) 0 0
\(399\) 11820.0 1.48305
\(400\) 0 0
\(401\) −671.306 −0.0835996 −0.0417998 0.999126i \(-0.513309\pi\)
−0.0417998 + 0.999126i \(0.513309\pi\)
\(402\) 0 0
\(403\) −2648.52 −0.327375
\(404\) 0 0
\(405\) 2929.04 0.359371
\(406\) 0 0
\(407\) 6115.83 0.744842
\(408\) 0 0
\(409\) 12957.4 1.56651 0.783253 0.621703i \(-0.213559\pi\)
0.783253 + 0.621703i \(0.213559\pi\)
\(410\) 0 0
\(411\) 12383.2 1.48618
\(412\) 0 0
\(413\) −5370.08 −0.639817
\(414\) 0 0
\(415\) 5131.26 0.606949
\(416\) 0 0
\(417\) 1394.02 0.163706
\(418\) 0 0
\(419\) −14023.2 −1.63503 −0.817516 0.575906i \(-0.804649\pi\)
−0.817516 + 0.575906i \(0.804649\pi\)
\(420\) 0 0
\(421\) −4825.76 −0.558653 −0.279326 0.960196i \(-0.590111\pi\)
−0.279326 + 0.960196i \(0.590111\pi\)
\(422\) 0 0
\(423\) 10630.8 1.22195
\(424\) 0 0
\(425\) −2889.39 −0.329779
\(426\) 0 0
\(427\) −16206.7 −1.83676
\(428\) 0 0
\(429\) 24690.2 2.77868
\(430\) 0 0
\(431\) −3901.30 −0.436007 −0.218003 0.975948i \(-0.569954\pi\)
−0.218003 + 0.975948i \(0.569954\pi\)
\(432\) 0 0
\(433\) 1027.04 0.113987 0.0569933 0.998375i \(-0.481849\pi\)
0.0569933 + 0.998375i \(0.481849\pi\)
\(434\) 0 0
\(435\) 9983.93 1.10044
\(436\) 0 0
\(437\) 396.057 0.0433547
\(438\) 0 0
\(439\) 255.290 0.0277547 0.0138774 0.999904i \(-0.495583\pi\)
0.0138774 + 0.999904i \(0.495583\pi\)
\(440\) 0 0
\(441\) 4020.90 0.434176
\(442\) 0 0
\(443\) −6551.19 −0.702611 −0.351305 0.936261i \(-0.614262\pi\)
−0.351305 + 0.936261i \(0.614262\pi\)
\(444\) 0 0
\(445\) −774.245 −0.0824780
\(446\) 0 0
\(447\) −1906.56 −0.201739
\(448\) 0 0
\(449\) −2364.38 −0.248512 −0.124256 0.992250i \(-0.539654\pi\)
−0.124256 + 0.992250i \(0.539654\pi\)
\(450\) 0 0
\(451\) 8961.00 0.935603
\(452\) 0 0
\(453\) −311.918 −0.0323514
\(454\) 0 0
\(455\) 4631.01 0.477154
\(456\) 0 0
\(457\) 4440.07 0.454481 0.227241 0.973839i \(-0.427030\pi\)
0.227241 + 0.973839i \(0.427030\pi\)
\(458\) 0 0
\(459\) 25909.9 2.63479
\(460\) 0 0
\(461\) −891.518 −0.0900697 −0.0450349 0.998985i \(-0.514340\pi\)
−0.0450349 + 0.998985i \(0.514340\pi\)
\(462\) 0 0
\(463\) 3294.85 0.330723 0.165361 0.986233i \(-0.447121\pi\)
0.165361 + 0.986233i \(0.447121\pi\)
\(464\) 0 0
\(465\) 2607.67 0.260060
\(466\) 0 0
\(467\) 1488.22 0.147466 0.0737329 0.997278i \(-0.476509\pi\)
0.0737329 + 0.997278i \(0.476509\pi\)
\(468\) 0 0
\(469\) 2905.11 0.286025
\(470\) 0 0
\(471\) −3111.01 −0.304348
\(472\) 0 0
\(473\) −413.657 −0.0402114
\(474\) 0 0
\(475\) −1620.20 −0.156505
\(476\) 0 0
\(477\) 14382.8 1.38059
\(478\) 0 0
\(479\) 17534.7 1.67261 0.836304 0.548266i \(-0.184712\pi\)
0.836304 + 0.548266i \(0.184712\pi\)
\(480\) 0 0
\(481\) −4501.84 −0.426749
\(482\) 0 0
\(483\) 1114.59 0.105001
\(484\) 0 0
\(485\) 2070.20 0.193821
\(486\) 0 0
\(487\) 10113.8 0.941067 0.470533 0.882382i \(-0.344062\pi\)
0.470533 + 0.882382i \(0.344062\pi\)
\(488\) 0 0
\(489\) −18056.4 −1.66981
\(490\) 0 0
\(491\) 17855.8 1.64119 0.820594 0.571512i \(-0.193643\pi\)
0.820594 + 0.571512i \(0.193643\pi\)
\(492\) 0 0
\(493\) 25933.3 2.36912
\(494\) 0 0
\(495\) −16021.3 −1.45475
\(496\) 0 0
\(497\) −21396.2 −1.93109
\(498\) 0 0
\(499\) 2985.84 0.267865 0.133932 0.990990i \(-0.457240\pi\)
0.133932 + 0.990990i \(0.457240\pi\)
\(500\) 0 0
\(501\) 1909.89 0.170315
\(502\) 0 0
\(503\) 2159.75 0.191449 0.0957243 0.995408i \(-0.469483\pi\)
0.0957243 + 0.995408i \(0.469483\pi\)
\(504\) 0 0
\(505\) 8884.94 0.782920
\(506\) 0 0
\(507\) 1376.65 0.120590
\(508\) 0 0
\(509\) 16880.6 1.46998 0.734989 0.678079i \(-0.237187\pi\)
0.734989 + 0.678079i \(0.237187\pi\)
\(510\) 0 0
\(511\) −21681.1 −1.87694
\(512\) 0 0
\(513\) 14528.8 1.25041
\(514\) 0 0
\(515\) 3839.95 0.328560
\(516\) 0 0
\(517\) −12505.1 −1.06378
\(518\) 0 0
\(519\) −30478.9 −2.57779
\(520\) 0 0
\(521\) 3915.76 0.329276 0.164638 0.986354i \(-0.447354\pi\)
0.164638 + 0.986354i \(0.447354\pi\)
\(522\) 0 0
\(523\) 14478.8 1.21054 0.605271 0.796019i \(-0.293065\pi\)
0.605271 + 0.796019i \(0.293065\pi\)
\(524\) 0 0
\(525\) −4559.59 −0.379042
\(526\) 0 0
\(527\) 6773.43 0.559877
\(528\) 0 0
\(529\) −12129.7 −0.996930
\(530\) 0 0
\(531\) −13675.3 −1.11762
\(532\) 0 0
\(533\) −6596.16 −0.536044
\(534\) 0 0
\(535\) −8244.99 −0.666285
\(536\) 0 0
\(537\) 18065.8 1.45177
\(538\) 0 0
\(539\) −4729.83 −0.377975
\(540\) 0 0
\(541\) −11827.6 −0.939940 −0.469970 0.882682i \(-0.655735\pi\)
−0.469970 + 0.882682i \(0.655735\pi\)
\(542\) 0 0
\(543\) −1816.63 −0.143571
\(544\) 0 0
\(545\) 4421.10 0.347485
\(546\) 0 0
\(547\) 6446.22 0.503877 0.251938 0.967743i \(-0.418932\pi\)
0.251938 + 0.967743i \(0.418932\pi\)
\(548\) 0 0
\(549\) −41271.6 −3.20843
\(550\) 0 0
\(551\) 14541.9 1.12433
\(552\) 0 0
\(553\) 16941.6 1.30277
\(554\) 0 0
\(555\) 4432.42 0.339001
\(556\) 0 0
\(557\) −14419.5 −1.09690 −0.548451 0.836183i \(-0.684782\pi\)
−0.548451 + 0.836183i \(0.684782\pi\)
\(558\) 0 0
\(559\) 304.492 0.0230387
\(560\) 0 0
\(561\) −63143.9 −4.75211
\(562\) 0 0
\(563\) −817.038 −0.0611617 −0.0305808 0.999532i \(-0.509736\pi\)
−0.0305808 + 0.999532i \(0.509736\pi\)
\(564\) 0 0
\(565\) −5694.24 −0.423998
\(566\) 0 0
\(567\) 12006.1 0.889256
\(568\) 0 0
\(569\) −16795.5 −1.23744 −0.618720 0.785612i \(-0.712348\pi\)
−0.618720 + 0.785612i \(0.712348\pi\)
\(570\) 0 0
\(571\) −15342.6 −1.12447 −0.562233 0.826979i \(-0.690057\pi\)
−0.562233 + 0.826979i \(0.690057\pi\)
\(572\) 0 0
\(573\) 5493.81 0.400536
\(574\) 0 0
\(575\) −152.781 −0.0110807
\(576\) 0 0
\(577\) 1287.65 0.0929039 0.0464519 0.998921i \(-0.485209\pi\)
0.0464519 + 0.998921i \(0.485209\pi\)
\(578\) 0 0
\(579\) −27331.7 −1.96177
\(580\) 0 0
\(581\) 21032.9 1.50188
\(582\) 0 0
\(583\) −16918.6 −1.20188
\(584\) 0 0
\(585\) 11793.2 0.833487
\(586\) 0 0
\(587\) 2074.66 0.145878 0.0729391 0.997336i \(-0.476762\pi\)
0.0729391 + 0.997336i \(0.476762\pi\)
\(588\) 0 0
\(589\) 3798.16 0.265705
\(590\) 0 0
\(591\) 7226.84 0.502999
\(592\) 0 0
\(593\) 16263.0 1.12621 0.563104 0.826386i \(-0.309607\pi\)
0.563104 + 0.826386i \(0.309607\pi\)
\(594\) 0 0
\(595\) −11843.5 −0.816030
\(596\) 0 0
\(597\) 9485.73 0.650293
\(598\) 0 0
\(599\) 22423.7 1.52956 0.764780 0.644292i \(-0.222848\pi\)
0.764780 + 0.644292i \(0.222848\pi\)
\(600\) 0 0
\(601\) −2915.58 −0.197885 −0.0989424 0.995093i \(-0.531546\pi\)
−0.0989424 + 0.995093i \(0.531546\pi\)
\(602\) 0 0
\(603\) 7398.09 0.499624
\(604\) 0 0
\(605\) 12191.0 0.819234
\(606\) 0 0
\(607\) −11897.3 −0.795546 −0.397773 0.917484i \(-0.630217\pi\)
−0.397773 + 0.917484i \(0.630217\pi\)
\(608\) 0 0
\(609\) 40923.9 2.72302
\(610\) 0 0
\(611\) 9204.98 0.609482
\(612\) 0 0
\(613\) −22791.7 −1.50171 −0.750856 0.660466i \(-0.770359\pi\)
−0.750856 + 0.660466i \(0.770359\pi\)
\(614\) 0 0
\(615\) 6494.44 0.425823
\(616\) 0 0
\(617\) 11894.0 0.776071 0.388036 0.921644i \(-0.373154\pi\)
0.388036 + 0.921644i \(0.373154\pi\)
\(618\) 0 0
\(619\) −15567.8 −1.01086 −0.505431 0.862867i \(-0.668667\pi\)
−0.505431 + 0.862867i \(0.668667\pi\)
\(620\) 0 0
\(621\) 1370.02 0.0885301
\(622\) 0 0
\(623\) −3173.61 −0.204090
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −35407.5 −2.25524
\(628\) 0 0
\(629\) 11513.2 0.729828
\(630\) 0 0
\(631\) −23681.8 −1.49407 −0.747034 0.664786i \(-0.768523\pi\)
−0.747034 + 0.664786i \(0.768523\pi\)
\(632\) 0 0
\(633\) 10876.7 0.682953
\(634\) 0 0
\(635\) −8508.02 −0.531701
\(636\) 0 0
\(637\) 3481.62 0.216557
\(638\) 0 0
\(639\) −54487.1 −3.37320
\(640\) 0 0
\(641\) 21351.6 1.31566 0.657831 0.753166i \(-0.271474\pi\)
0.657831 + 0.753166i \(0.271474\pi\)
\(642\) 0 0
\(643\) 7196.04 0.441344 0.220672 0.975348i \(-0.429175\pi\)
0.220672 + 0.975348i \(0.429175\pi\)
\(644\) 0 0
\(645\) −299.796 −0.0183015
\(646\) 0 0
\(647\) −20897.9 −1.26983 −0.634915 0.772582i \(-0.718965\pi\)
−0.634915 + 0.772582i \(0.718965\pi\)
\(648\) 0 0
\(649\) 16086.4 0.972956
\(650\) 0 0
\(651\) 10688.8 0.643513
\(652\) 0 0
\(653\) 8655.43 0.518703 0.259352 0.965783i \(-0.416491\pi\)
0.259352 + 0.965783i \(0.416491\pi\)
\(654\) 0 0
\(655\) 7704.93 0.459628
\(656\) 0 0
\(657\) −55212.6 −3.27861
\(658\) 0 0
\(659\) −13004.3 −0.768705 −0.384352 0.923186i \(-0.625575\pi\)
−0.384352 + 0.923186i \(0.625575\pi\)
\(660\) 0 0
\(661\) −19135.2 −1.12598 −0.562991 0.826463i \(-0.690349\pi\)
−0.562991 + 0.826463i \(0.690349\pi\)
\(662\) 0 0
\(663\) 46480.0 2.72267
\(664\) 0 0
\(665\) −6641.18 −0.387269
\(666\) 0 0
\(667\) 1371.26 0.0796033
\(668\) 0 0
\(669\) −3687.51 −0.213105
\(670\) 0 0
\(671\) 48548.3 2.79312
\(672\) 0 0
\(673\) 24101.3 1.38044 0.690221 0.723599i \(-0.257513\pi\)
0.690221 + 0.723599i \(0.257513\pi\)
\(674\) 0 0
\(675\) −5604.54 −0.319584
\(676\) 0 0
\(677\) 17892.9 1.01577 0.507887 0.861424i \(-0.330427\pi\)
0.507887 + 0.861424i \(0.330427\pi\)
\(678\) 0 0
\(679\) 8485.72 0.479606
\(680\) 0 0
\(681\) 20413.2 1.14866
\(682\) 0 0
\(683\) 27545.4 1.54319 0.771593 0.636117i \(-0.219460\pi\)
0.771593 + 0.636117i \(0.219460\pi\)
\(684\) 0 0
\(685\) −6957.67 −0.388086
\(686\) 0 0
\(687\) −28607.7 −1.58872
\(688\) 0 0
\(689\) 12453.8 0.688608
\(690\) 0 0
\(691\) −11360.1 −0.625408 −0.312704 0.949851i \(-0.601235\pi\)
−0.312704 + 0.949851i \(0.601235\pi\)
\(692\) 0 0
\(693\) −65671.0 −3.59976
\(694\) 0 0
\(695\) −783.245 −0.0427485
\(696\) 0 0
\(697\) 16869.3 0.916744
\(698\) 0 0
\(699\) −32023.8 −1.73284
\(700\) 0 0
\(701\) −148.008 −0.00797459 −0.00398729 0.999992i \(-0.501269\pi\)
−0.00398729 + 0.999992i \(0.501269\pi\)
\(702\) 0 0
\(703\) 6455.95 0.346360
\(704\) 0 0
\(705\) −9063.02 −0.484160
\(706\) 0 0
\(707\) 36419.2 1.93732
\(708\) 0 0
\(709\) 2401.61 0.127213 0.0636067 0.997975i \(-0.479740\pi\)
0.0636067 + 0.997975i \(0.479740\pi\)
\(710\) 0 0
\(711\) 43143.0 2.27566
\(712\) 0 0
\(713\) 358.155 0.0188121
\(714\) 0 0
\(715\) −13872.5 −0.725598
\(716\) 0 0
\(717\) −21914.5 −1.14144
\(718\) 0 0
\(719\) −13003.4 −0.674472 −0.337236 0.941420i \(-0.609492\pi\)
−0.337236 + 0.941420i \(0.609492\pi\)
\(720\) 0 0
\(721\) 15739.9 0.813016
\(722\) 0 0
\(723\) −36959.9 −1.90118
\(724\) 0 0
\(725\) −5609.59 −0.287359
\(726\) 0 0
\(727\) 36506.5 1.86238 0.931190 0.364533i \(-0.118771\pi\)
0.931190 + 0.364533i \(0.118771\pi\)
\(728\) 0 0
\(729\) −23290.3 −1.18327
\(730\) 0 0
\(731\) −778.720 −0.0394008
\(732\) 0 0
\(733\) −18661.5 −0.940350 −0.470175 0.882573i \(-0.655809\pi\)
−0.470175 + 0.882573i \(0.655809\pi\)
\(734\) 0 0
\(735\) −3427.92 −0.172028
\(736\) 0 0
\(737\) −8702.46 −0.434951
\(738\) 0 0
\(739\) 27675.0 1.37759 0.688797 0.724954i \(-0.258139\pi\)
0.688797 + 0.724954i \(0.258139\pi\)
\(740\) 0 0
\(741\) 26063.3 1.29212
\(742\) 0 0
\(743\) −17622.0 −0.870103 −0.435052 0.900406i \(-0.643270\pi\)
−0.435052 + 0.900406i \(0.643270\pi\)
\(744\) 0 0
\(745\) 1071.22 0.0526800
\(746\) 0 0
\(747\) 53562.0 2.62347
\(748\) 0 0
\(749\) −33796.1 −1.64871
\(750\) 0 0
\(751\) −34581.0 −1.68027 −0.840133 0.542381i \(-0.817523\pi\)
−0.840133 + 0.542381i \(0.817523\pi\)
\(752\) 0 0
\(753\) 11882.4 0.575058
\(754\) 0 0
\(755\) 175.255 0.00844793
\(756\) 0 0
\(757\) 33994.4 1.63216 0.816082 0.577936i \(-0.196142\pi\)
0.816082 + 0.577936i \(0.196142\pi\)
\(758\) 0 0
\(759\) −3338.82 −0.159673
\(760\) 0 0
\(761\) −34917.8 −1.66330 −0.831649 0.555302i \(-0.812603\pi\)
−0.831649 + 0.555302i \(0.812603\pi\)
\(762\) 0 0
\(763\) 18122.0 0.859844
\(764\) 0 0
\(765\) −30160.5 −1.42543
\(766\) 0 0
\(767\) −11841.2 −0.557445
\(768\) 0 0
\(769\) −20714.9 −0.971388 −0.485694 0.874129i \(-0.661433\pi\)
−0.485694 + 0.874129i \(0.661433\pi\)
\(770\) 0 0
\(771\) 4719.66 0.220459
\(772\) 0 0
\(773\) −12461.4 −0.579826 −0.289913 0.957053i \(-0.593626\pi\)
−0.289913 + 0.957053i \(0.593626\pi\)
\(774\) 0 0
\(775\) −1465.15 −0.0679095
\(776\) 0 0
\(777\) 18168.4 0.838851
\(778\) 0 0
\(779\) 9459.35 0.435066
\(780\) 0 0
\(781\) 64093.8 2.93657
\(782\) 0 0
\(783\) 50302.7 2.29588
\(784\) 0 0
\(785\) 1747.96 0.0794743
\(786\) 0 0
\(787\) 32821.0 1.48658 0.743292 0.668967i \(-0.233263\pi\)
0.743292 + 0.668967i \(0.233263\pi\)
\(788\) 0 0
\(789\) 19882.4 0.897126
\(790\) 0 0
\(791\) −23340.6 −1.04917
\(792\) 0 0
\(793\) −35736.2 −1.60029
\(794\) 0 0
\(795\) −12261.7 −0.547016
\(796\) 0 0
\(797\) 7777.06 0.345643 0.172822 0.984953i \(-0.444712\pi\)
0.172822 + 0.984953i \(0.444712\pi\)
\(798\) 0 0
\(799\) −23541.2 −1.04234
\(800\) 0 0
\(801\) −8081.85 −0.356502
\(802\) 0 0
\(803\) 64947.2 2.85422
\(804\) 0 0
\(805\) −626.245 −0.0274189
\(806\) 0 0
\(807\) −45350.0 −1.97819
\(808\) 0 0
\(809\) 20407.4 0.886880 0.443440 0.896304i \(-0.353758\pi\)
0.443440 + 0.896304i \(0.353758\pi\)
\(810\) 0 0
\(811\) −25876.6 −1.12041 −0.560205 0.828354i \(-0.689277\pi\)
−0.560205 + 0.828354i \(0.689277\pi\)
\(812\) 0 0
\(813\) −12043.8 −0.519550
\(814\) 0 0
\(815\) 10145.2 0.436038
\(816\) 0 0
\(817\) −436.662 −0.0186987
\(818\) 0 0
\(819\) 48340.2 2.06245
\(820\) 0 0
\(821\) 1100.58 0.0467850 0.0233925 0.999726i \(-0.492553\pi\)
0.0233925 + 0.999726i \(0.492553\pi\)
\(822\) 0 0
\(823\) −36245.7 −1.53517 −0.767585 0.640948i \(-0.778542\pi\)
−0.767585 + 0.640948i \(0.778542\pi\)
\(824\) 0 0
\(825\) 13658.6 0.576401
\(826\) 0 0
\(827\) 1996.72 0.0839572 0.0419786 0.999119i \(-0.486634\pi\)
0.0419786 + 0.999119i \(0.486634\pi\)
\(828\) 0 0
\(829\) 43393.8 1.81801 0.909004 0.416788i \(-0.136844\pi\)
0.909004 + 0.416788i \(0.136844\pi\)
\(830\) 0 0
\(831\) 79019.1 3.29861
\(832\) 0 0
\(833\) −8904.03 −0.370356
\(834\) 0 0
\(835\) −1073.10 −0.0444743
\(836\) 0 0
\(837\) 13138.4 0.542569
\(838\) 0 0
\(839\) −3424.53 −0.140915 −0.0704576 0.997515i \(-0.522446\pi\)
−0.0704576 + 0.997515i \(0.522446\pi\)
\(840\) 0 0
\(841\) 25959.0 1.06437
\(842\) 0 0
\(843\) 10194.2 0.416498
\(844\) 0 0
\(845\) −773.490 −0.0314898
\(846\) 0 0
\(847\) 49970.8 2.02718
\(848\) 0 0
\(849\) −3429.66 −0.138640
\(850\) 0 0
\(851\) 608.778 0.0245225
\(852\) 0 0
\(853\) −5173.63 −0.207669 −0.103835 0.994595i \(-0.533111\pi\)
−0.103835 + 0.994595i \(0.533111\pi\)
\(854\) 0 0
\(855\) −16912.3 −0.676477
\(856\) 0 0
\(857\) 28323.8 1.12896 0.564482 0.825445i \(-0.309076\pi\)
0.564482 + 0.825445i \(0.309076\pi\)
\(858\) 0 0
\(859\) −42970.7 −1.70680 −0.853401 0.521255i \(-0.825464\pi\)
−0.853401 + 0.521255i \(0.825464\pi\)
\(860\) 0 0
\(861\) 26620.6 1.05369
\(862\) 0 0
\(863\) 12664.1 0.499527 0.249764 0.968307i \(-0.419647\pi\)
0.249764 + 0.968307i \(0.419647\pi\)
\(864\) 0 0
\(865\) 17124.9 0.673139
\(866\) 0 0
\(867\) −75149.2 −2.94371
\(868\) 0 0
\(869\) −50749.7 −1.98109
\(870\) 0 0
\(871\) 6405.85 0.249201
\(872\) 0 0
\(873\) 21609.6 0.837769
\(874\) 0 0
\(875\) 2561.86 0.0989791
\(876\) 0 0
\(877\) −7403.14 −0.285047 −0.142524 0.989791i \(-0.545522\pi\)
−0.142524 + 0.989791i \(0.545522\pi\)
\(878\) 0 0
\(879\) −33925.6 −1.30180
\(880\) 0 0
\(881\) −5691.74 −0.217661 −0.108831 0.994060i \(-0.534711\pi\)
−0.108831 + 0.994060i \(0.534711\pi\)
\(882\) 0 0
\(883\) −13915.1 −0.530329 −0.265164 0.964203i \(-0.585426\pi\)
−0.265164 + 0.964203i \(0.585426\pi\)
\(884\) 0 0
\(885\) 11658.6 0.442823
\(886\) 0 0
\(887\) −35631.2 −1.34879 −0.674396 0.738370i \(-0.735596\pi\)
−0.674396 + 0.738370i \(0.735596\pi\)
\(888\) 0 0
\(889\) −34874.2 −1.31568
\(890\) 0 0
\(891\) −35965.0 −1.35227
\(892\) 0 0
\(893\) −13200.6 −0.494670
\(894\) 0 0
\(895\) −10150.5 −0.379100
\(896\) 0 0
\(897\) 2457.70 0.0914829
\(898\) 0 0
\(899\) 13150.3 0.487859
\(900\) 0 0
\(901\) −31849.8 −1.17766
\(902\) 0 0
\(903\) −1228.86 −0.0452866
\(904\) 0 0
\(905\) 1020.69 0.0374906
\(906\) 0 0
\(907\) 22734.4 0.832285 0.416143 0.909299i \(-0.363382\pi\)
0.416143 + 0.909299i \(0.363382\pi\)
\(908\) 0 0
\(909\) 92744.3 3.38408
\(910\) 0 0
\(911\) 32714.8 1.18978 0.594890 0.803807i \(-0.297195\pi\)
0.594890 + 0.803807i \(0.297195\pi\)
\(912\) 0 0
\(913\) −63005.6 −2.28388
\(914\) 0 0
\(915\) 35185.1 1.27124
\(916\) 0 0
\(917\) 31582.3 1.13734
\(918\) 0 0
\(919\) 41077.0 1.47443 0.737217 0.675656i \(-0.236139\pi\)
0.737217 + 0.675656i \(0.236139\pi\)
\(920\) 0 0
\(921\) −61380.3 −2.19604
\(922\) 0 0
\(923\) −47179.3 −1.68247
\(924\) 0 0
\(925\) −2490.41 −0.0885234
\(926\) 0 0
\(927\) 40082.9 1.42017
\(928\) 0 0
\(929\) 27678.8 0.977515 0.488758 0.872420i \(-0.337450\pi\)
0.488758 + 0.872420i \(0.337450\pi\)
\(930\) 0 0
\(931\) −4992.87 −0.175762
\(932\) 0 0
\(933\) 72307.6 2.53724
\(934\) 0 0
\(935\) 35478.1 1.24092
\(936\) 0 0
\(937\) −17120.7 −0.596915 −0.298457 0.954423i \(-0.596472\pi\)
−0.298457 + 0.954423i \(0.596472\pi\)
\(938\) 0 0
\(939\) −18266.6 −0.634832
\(940\) 0 0
\(941\) −30687.2 −1.06310 −0.531549 0.847028i \(-0.678390\pi\)
−0.531549 + 0.847028i \(0.678390\pi\)
\(942\) 0 0
\(943\) 891.989 0.0308029
\(944\) 0 0
\(945\) −22972.9 −0.790803
\(946\) 0 0
\(947\) −36649.9 −1.25761 −0.628807 0.777561i \(-0.716456\pi\)
−0.628807 + 0.777561i \(0.716456\pi\)
\(948\) 0 0
\(949\) −47807.4 −1.63529
\(950\) 0 0
\(951\) −37154.3 −1.26689
\(952\) 0 0
\(953\) 23768.8 0.807919 0.403959 0.914777i \(-0.367634\pi\)
0.403959 + 0.914777i \(0.367634\pi\)
\(954\) 0 0
\(955\) −3086.77 −0.104592
\(956\) 0 0
\(957\) −122590. −4.14084
\(958\) 0 0
\(959\) −28519.4 −0.960311
\(960\) 0 0
\(961\) −26356.3 −0.884708
\(962\) 0 0
\(963\) −86064.3 −2.87994
\(964\) 0 0
\(965\) 15356.7 0.512278
\(966\) 0 0
\(967\) −36241.8 −1.20523 −0.602615 0.798032i \(-0.705875\pi\)
−0.602615 + 0.798032i \(0.705875\pi\)
\(968\) 0 0
\(969\) −66655.5 −2.20979
\(970\) 0 0
\(971\) 16837.4 0.556476 0.278238 0.960512i \(-0.410250\pi\)
0.278238 + 0.960512i \(0.410250\pi\)
\(972\) 0 0
\(973\) −3210.51 −0.105780
\(974\) 0 0
\(975\) −10054.0 −0.330243
\(976\) 0 0
\(977\) −26322.4 −0.861954 −0.430977 0.902363i \(-0.641831\pi\)
−0.430977 + 0.902363i \(0.641831\pi\)
\(978\) 0 0
\(979\) 9506.78 0.310355
\(980\) 0 0
\(981\) 46149.1 1.50196
\(982\) 0 0
\(983\) −42438.7 −1.37699 −0.688497 0.725240i \(-0.741729\pi\)
−0.688497 + 0.725240i \(0.741729\pi\)
\(984\) 0 0
\(985\) −4060.49 −0.131348
\(986\) 0 0
\(987\) −37149.1 −1.19804
\(988\) 0 0
\(989\) −41.1760 −0.00132388
\(990\) 0 0
\(991\) −17890.3 −0.573464 −0.286732 0.958011i \(-0.592569\pi\)
−0.286732 + 0.958011i \(0.592569\pi\)
\(992\) 0 0
\(993\) 104458. 3.33824
\(994\) 0 0
\(995\) −5329.67 −0.169811
\(996\) 0 0
\(997\) 16189.9 0.514283 0.257142 0.966374i \(-0.417219\pi\)
0.257142 + 0.966374i \(0.417219\pi\)
\(998\) 0 0
\(999\) 22332.2 0.707265
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.4.a.c.1.1 2
3.2 odd 2 1440.4.a.t.1.2 2
4.3 odd 2 160.4.a.g.1.2 yes 2
5.2 odd 4 800.4.c.i.449.4 4
5.3 odd 4 800.4.c.i.449.1 4
5.4 even 2 800.4.a.s.1.2 2
8.3 odd 2 320.4.a.o.1.1 2
8.5 even 2 320.4.a.s.1.2 2
12.11 even 2 1440.4.a.x.1.1 2
16.3 odd 4 1280.4.d.q.641.4 4
16.5 even 4 1280.4.d.x.641.4 4
16.11 odd 4 1280.4.d.q.641.1 4
16.13 even 4 1280.4.d.x.641.1 4
20.3 even 4 800.4.c.k.449.4 4
20.7 even 4 800.4.c.k.449.1 4
20.19 odd 2 800.4.a.m.1.1 2
40.19 odd 2 1600.4.a.cn.1.2 2
40.29 even 2 1600.4.a.cd.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.4.a.c.1.1 2 1.1 even 1 trivial
160.4.a.g.1.2 yes 2 4.3 odd 2
320.4.a.o.1.1 2 8.3 odd 2
320.4.a.s.1.2 2 8.5 even 2
800.4.a.m.1.1 2 20.19 odd 2
800.4.a.s.1.2 2 5.4 even 2
800.4.c.i.449.1 4 5.3 odd 4
800.4.c.i.449.4 4 5.2 odd 4
800.4.c.k.449.1 4 20.7 even 4
800.4.c.k.449.4 4 20.3 even 4
1280.4.d.q.641.1 4 16.11 odd 4
1280.4.d.q.641.4 4 16.3 odd 4
1280.4.d.x.641.1 4 16.13 even 4
1280.4.d.x.641.4 4 16.5 even 4
1440.4.a.t.1.2 2 3.2 odd 2
1440.4.a.x.1.1 2 12.11 even 2
1600.4.a.cd.1.1 2 40.29 even 2
1600.4.a.cn.1.2 2 40.19 odd 2