L(s) = 1 | + 20·5-s − 60·11-s − 24·19-s + 275·25-s − 128·29-s − 624·31-s + 748·41-s + 362·49-s − 1.20e3·55-s + 1.02e3·59-s + 1.50e3·61-s + 1.84e3·71-s − 144·79-s − 580·89-s − 480·95-s − 208·101-s − 1.14e3·109-s + 38·121-s + 3.00e3·125-s + 127-s + 131-s + 137-s + 139-s − 2.56e3·145-s + 149-s + 151-s − 1.24e4·155-s + ⋯ |
L(s) = 1 | + 1.78·5-s − 1.64·11-s − 0.289·19-s + 11/5·25-s − 0.819·29-s − 3.61·31-s + 2.84·41-s + 1.05·49-s − 2.94·55-s + 2.25·59-s + 3.16·61-s + 3.08·71-s − 0.205·79-s − 0.690·89-s − 0.518·95-s − 0.204·101-s − 1.00·109-s + 0.0285·121-s + 2.14·125-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s − 1.46·145-s + 0.000549·149-s + 0.000538·151-s − 6.46·155-s + ⋯ |
Λ(s)=(=(2073600s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(2073600s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2073600
= 210⋅34⋅52
|
Sign: |
1
|
Analytic conductor: |
7218.66 |
Root analytic conductor: |
9.21752 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2073600, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
3.705975955 |
L(21) |
≈ |
3.705975955 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C2 | 1−4pT+p3T2 |
good | 7 | C22 | 1−362T2+p6T4 |
| 11 | C2 | (1+30T+p3T2)2 |
| 13 | C22 | 1−2950T2+p6T4 |
| 17 | C22 | 1−4926T2+p6T4 |
| 19 | C2 | (1+12T+p3T2)2 |
| 23 | C22 | 1−19150T2+p6T4 |
| 29 | C2 | (1+64T+p3T2)2 |
| 31 | C2 | (1+312T+p3T2)2 |
| 37 | C22 | 1−82262T2+p6T4 |
| 41 | C2 | (1−374T+p3T2)2 |
| 43 | C22 | 1+60010T2+p6T4 |
| 47 | C22 | 1−190222T2+p6T4 |
| 53 | C22 | 1−98838T2+p6T4 |
| 59 | C2 | (1−510T+p3T2)2 |
| 61 | C2 | (1−754T+p3T2)2 |
| 67 | C22 | 1−454070T2+p6T4 |
| 71 | C2 | (1−924T+p3T2)2 |
| 73 | C22 | 1−662434T2+p6T4 |
| 79 | C2 | (1+72T+p3T2)2 |
| 83 | C22 | 1−1119238T2+p6T4 |
| 89 | C2 | (1+290T+p3T2)2 |
| 97 | C22 | 1−1683970T2+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.541742100117204704659214908722, −9.139510755152034486241557464282, −8.436960427712506281639273600523, −8.419758107668550265432740129874, −7.60274664120605105313852704791, −7.36052496136214643269450979987, −6.96264074401133518583514882226, −6.50482752304830160907328819271, −5.88574156159852084089795592708, −5.44376429563268052804529886726, −5.37802717042391699557181664807, −5.20915532550212545101821080641, −4.12519231879542606167585001214, −3.92669585153679174060811840533, −3.20567447041666559858191237600, −2.48062156862639189626744594477, −2.14735511111703054915887147893, −2.03941806773108514571708023956, −1.01241873053732260153419952593, −0.46209766901744422265592530698,
0.46209766901744422265592530698, 1.01241873053732260153419952593, 2.03941806773108514571708023956, 2.14735511111703054915887147893, 2.48062156862639189626744594477, 3.20567447041666559858191237600, 3.92669585153679174060811840533, 4.12519231879542606167585001214, 5.20915532550212545101821080641, 5.37802717042391699557181664807, 5.44376429563268052804529886726, 5.88574156159852084089795592708, 6.50482752304830160907328819271, 6.96264074401133518583514882226, 7.36052496136214643269450979987, 7.60274664120605105313852704791, 8.419758107668550265432740129874, 8.436960427712506281639273600523, 9.139510755152034486241557464282, 9.541742100117204704659214908722