Properties

Label 1440.4.f.c
Level 14401440
Weight 44
Character orbit 1440.f
Analytic conductor 84.96384.963
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,4,Mod(289,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.289");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1440=25325 1440 = 2^{5} \cdot 3^{2} \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1440.f (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 84.962750408384.9627504083
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 480)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(5i+10)q5+18iq730q11+38iq1370iq1712q1972iq23+(100i+75)q2564q29312q31+(180i+90)q35138iq37+374q41++376iq97+O(q100) q + ( - 5 i + 10) q^{5} + 18 i q^{7} - 30 q^{11} + 38 i q^{13} - 70 i q^{17} - 12 q^{19} - 72 i q^{23} + ( - 100 i + 75) q^{25} - 64 q^{29} - 312 q^{31} + (180 i + 90) q^{35} - 138 i q^{37} + 374 q^{41} + \cdots + 376 i q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+20q560q1124q19+150q25128q29624q31+180q35+748q41+38q49600q55+1020q59+1508q61+380q65+1848q71144q79700q85+240q95+O(q100) 2 q + 20 q^{5} - 60 q^{11} - 24 q^{19} + 150 q^{25} - 128 q^{29} - 624 q^{31} + 180 q^{35} + 748 q^{41} + 38 q^{49} - 600 q^{55} + 1020 q^{59} + 1508 q^{61} + 380 q^{65} + 1848 q^{71} - 144 q^{79} - 700 q^{85}+ \cdots - 240 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1440Z)×\left(\mathbb{Z}/1440\mathbb{Z}\right)^\times.

nn 577577 641641 901901 991991
χ(n)\chi(n) 1-1 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
289.1
1.00000i
1.00000i
0 0 0 10.0000 5.00000i 0 18.0000i 0 0 0
289.2 0 0 0 10.0000 + 5.00000i 0 18.0000i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1440.4.f.c 2
3.b odd 2 1 480.4.f.b yes 2
4.b odd 2 1 1440.4.f.d 2
5.b even 2 1 inner 1440.4.f.c 2
12.b even 2 1 480.4.f.a 2
15.d odd 2 1 480.4.f.b yes 2
15.e even 4 1 2400.4.a.j 1
15.e even 4 1 2400.4.a.n 1
20.d odd 2 1 1440.4.f.d 2
24.f even 2 1 960.4.f.k 2
24.h odd 2 1 960.4.f.h 2
60.h even 2 1 480.4.f.a 2
60.l odd 4 1 2400.4.a.i 1
60.l odd 4 1 2400.4.a.m 1
120.i odd 2 1 960.4.f.h 2
120.m even 2 1 960.4.f.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
480.4.f.a 2 12.b even 2 1
480.4.f.a 2 60.h even 2 1
480.4.f.b yes 2 3.b odd 2 1
480.4.f.b yes 2 15.d odd 2 1
960.4.f.h 2 24.h odd 2 1
960.4.f.h 2 120.i odd 2 1
960.4.f.k 2 24.f even 2 1
960.4.f.k 2 120.m even 2 1
1440.4.f.c 2 1.a even 1 1 trivial
1440.4.f.c 2 5.b even 2 1 inner
1440.4.f.d 2 4.b odd 2 1
1440.4.f.d 2 20.d odd 2 1
2400.4.a.i 1 60.l odd 4 1
2400.4.a.j 1 15.e even 4 1
2400.4.a.m 1 60.l odd 4 1
2400.4.a.n 1 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(1440,[χ])S_{4}^{\mathrm{new}}(1440, [\chi]):

T72+324 T_{7}^{2} + 324 Copy content Toggle raw display
T11+30 T_{11} + 30 Copy content Toggle raw display
T172+4900 T_{17}^{2} + 4900 Copy content Toggle raw display
T29+64 T_{29} + 64 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T220T+125 T^{2} - 20T + 125 Copy content Toggle raw display
77 T2+324 T^{2} + 324 Copy content Toggle raw display
1111 (T+30)2 (T + 30)^{2} Copy content Toggle raw display
1313 T2+1444 T^{2} + 1444 Copy content Toggle raw display
1717 T2+4900 T^{2} + 4900 Copy content Toggle raw display
1919 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
2323 T2+5184 T^{2} + 5184 Copy content Toggle raw display
2929 (T+64)2 (T + 64)^{2} Copy content Toggle raw display
3131 (T+312)2 (T + 312)^{2} Copy content Toggle raw display
3737 T2+19044 T^{2} + 19044 Copy content Toggle raw display
4141 (T374)2 (T - 374)^{2} Copy content Toggle raw display
4343 T2+219024 T^{2} + 219024 Copy content Toggle raw display
4747 T2+17424 T^{2} + 17424 Copy content Toggle raw display
5353 T2+198916 T^{2} + 198916 Copy content Toggle raw display
5959 (T510)2 (T - 510)^{2} Copy content Toggle raw display
6161 (T754)2 (T - 754)^{2} Copy content Toggle raw display
6767 T2+147456 T^{2} + 147456 Copy content Toggle raw display
7171 (T924)2 (T - 924)^{2} Copy content Toggle raw display
7373 T2+115600 T^{2} + 115600 Copy content Toggle raw display
7979 (T+72)2 (T + 72)^{2} Copy content Toggle raw display
8383 T2+24336 T^{2} + 24336 Copy content Toggle raw display
8989 (T+290)2 (T + 290)^{2} Copy content Toggle raw display
9797 T2+141376 T^{2} + 141376 Copy content Toggle raw display
show more
show less