Properties

Label 1440.4.f.c
Level $1440$
Weight $4$
Character orbit 1440.f
Analytic conductor $84.963$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,4,Mod(289,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.289");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1440.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(84.9627504083\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 480)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 5 i + 10) q^{5} + 18 i q^{7} - 30 q^{11} + 38 i q^{13} - 70 i q^{17} - 12 q^{19} - 72 i q^{23} + ( - 100 i + 75) q^{25} - 64 q^{29} - 312 q^{31} + (180 i + 90) q^{35} - 138 i q^{37} + 374 q^{41} + \cdots + 376 i q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 20 q^{5} - 60 q^{11} - 24 q^{19} + 150 q^{25} - 128 q^{29} - 624 q^{31} + 180 q^{35} + 748 q^{41} + 38 q^{49} - 600 q^{55} + 1020 q^{59} + 1508 q^{61} + 380 q^{65} + 1848 q^{71} - 144 q^{79} - 700 q^{85}+ \cdots - 240 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1440\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(991\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
1.00000i
1.00000i
0 0 0 10.0000 5.00000i 0 18.0000i 0 0 0
289.2 0 0 0 10.0000 + 5.00000i 0 18.0000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1440.4.f.c 2
3.b odd 2 1 480.4.f.b yes 2
4.b odd 2 1 1440.4.f.d 2
5.b even 2 1 inner 1440.4.f.c 2
12.b even 2 1 480.4.f.a 2
15.d odd 2 1 480.4.f.b yes 2
15.e even 4 1 2400.4.a.j 1
15.e even 4 1 2400.4.a.n 1
20.d odd 2 1 1440.4.f.d 2
24.f even 2 1 960.4.f.k 2
24.h odd 2 1 960.4.f.h 2
60.h even 2 1 480.4.f.a 2
60.l odd 4 1 2400.4.a.i 1
60.l odd 4 1 2400.4.a.m 1
120.i odd 2 1 960.4.f.h 2
120.m even 2 1 960.4.f.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
480.4.f.a 2 12.b even 2 1
480.4.f.a 2 60.h even 2 1
480.4.f.b yes 2 3.b odd 2 1
480.4.f.b yes 2 15.d odd 2 1
960.4.f.h 2 24.h odd 2 1
960.4.f.h 2 120.i odd 2 1
960.4.f.k 2 24.f even 2 1
960.4.f.k 2 120.m even 2 1
1440.4.f.c 2 1.a even 1 1 trivial
1440.4.f.c 2 5.b even 2 1 inner
1440.4.f.d 2 4.b odd 2 1
1440.4.f.d 2 20.d odd 2 1
2400.4.a.i 1 60.l odd 4 1
2400.4.a.j 1 15.e even 4 1
2400.4.a.m 1 60.l odd 4 1
2400.4.a.n 1 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(1440, [\chi])\):

\( T_{7}^{2} + 324 \) Copy content Toggle raw display
\( T_{11} + 30 \) Copy content Toggle raw display
\( T_{17}^{2} + 4900 \) Copy content Toggle raw display
\( T_{29} + 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 20T + 125 \) Copy content Toggle raw display
$7$ \( T^{2} + 324 \) Copy content Toggle raw display
$11$ \( (T + 30)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 1444 \) Copy content Toggle raw display
$17$ \( T^{2} + 4900 \) Copy content Toggle raw display
$19$ \( (T + 12)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 5184 \) Copy content Toggle raw display
$29$ \( (T + 64)^{2} \) Copy content Toggle raw display
$31$ \( (T + 312)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 19044 \) Copy content Toggle raw display
$41$ \( (T - 374)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 219024 \) Copy content Toggle raw display
$47$ \( T^{2} + 17424 \) Copy content Toggle raw display
$53$ \( T^{2} + 198916 \) Copy content Toggle raw display
$59$ \( (T - 510)^{2} \) Copy content Toggle raw display
$61$ \( (T - 754)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 147456 \) Copy content Toggle raw display
$71$ \( (T - 924)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 115600 \) Copy content Toggle raw display
$79$ \( (T + 72)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 24336 \) Copy content Toggle raw display
$89$ \( (T + 290)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 141376 \) Copy content Toggle raw display
show more
show less