L(s) = 1 | + (0.939 − 0.342i)2-s + (0.766 − 0.642i)4-s + (0.473 + 0.397i)5-s + (0.500 − 0.866i)8-s + (−0.939 − 0.342i)9-s + (0.580 + 0.211i)10-s + (0.280 + 1.59i)13-s + (0.173 − 0.984i)16-s + (1.52 − 0.553i)17-s − 18-s + 0.618·20-s + (−0.107 − 0.608i)25-s + (0.809 + 1.40i)26-s + (−1.52 − 0.553i)29-s + (−0.173 − 0.984i)32-s + ⋯ |
L(s) = 1 | + (0.939 − 0.342i)2-s + (0.766 − 0.642i)4-s + (0.473 + 0.397i)5-s + (0.500 − 0.866i)8-s + (−0.939 − 0.342i)9-s + (0.580 + 0.211i)10-s + (0.280 + 1.59i)13-s + (0.173 − 0.984i)16-s + (1.52 − 0.553i)17-s − 18-s + 0.618·20-s + (−0.107 − 0.608i)25-s + (0.809 + 1.40i)26-s + (−1.52 − 0.553i)29-s + (−0.173 − 0.984i)32-s + ⋯ |
Λ(s)=(=(1444s/2ΓC(s)L(s)(0.872+0.489i)Λ(1−s)
Λ(s)=(=(1444s/2ΓC(s)L(s)(0.872+0.489i)Λ(1−s)
Degree: |
2 |
Conductor: |
1444
= 22⋅192
|
Sign: |
0.872+0.489i
|
Analytic conductor: |
0.720649 |
Root analytic conductor: |
0.848910 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1444(423,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1444, ( :0), 0.872+0.489i)
|
Particular Values
L(21) |
≈ |
2.007950949 |
L(21) |
≈ |
2.007950949 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.939+0.342i)T |
| 19 | 1 |
good | 3 | 1+(0.939+0.342i)T2 |
| 5 | 1+(−0.473−0.397i)T+(0.173+0.984i)T2 |
| 7 | 1+(0.5−0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 13 | 1+(−0.280−1.59i)T+(−0.939+0.342i)T2 |
| 17 | 1+(−1.52+0.553i)T+(0.766−0.642i)T2 |
| 23 | 1+(−0.173+0.984i)T2 |
| 29 | 1+(1.52+0.553i)T+(0.766+0.642i)T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+0.618T+T2 |
| 41 | 1+(0.107−0.608i)T+(−0.939−0.342i)T2 |
| 43 | 1+(−0.173−0.984i)T2 |
| 47 | 1+(−0.766−0.642i)T2 |
| 53 | 1+(0.473−0.397i)T+(0.173−0.984i)T2 |
| 59 | 1+(−0.766+0.642i)T2 |
| 61 | 1+(1.23−1.04i)T+(0.173−0.984i)T2 |
| 67 | 1+(−0.766−0.642i)T2 |
| 71 | 1+(−0.173−0.984i)T2 |
| 73 | 1+(−0.107+0.608i)T+(−0.939−0.342i)T2 |
| 79 | 1+(0.939+0.342i)T2 |
| 83 | 1+(0.5−0.866i)T2 |
| 89 | 1+(0.107+0.608i)T+(−0.939+0.342i)T2 |
| 97 | 1+(1.52−0.553i)T+(0.766−0.642i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.671332521210169977892011127355, −9.174601749312054818087718780487, −7.88436225515720016165497696312, −6.96312926370642743081648677156, −6.13939079854093484665350719257, −5.63056150096935075320905505067, −4.54347760472291183901769002211, −3.55805458109715855691361100858, −2.71126620787086906439744874980, −1.61205313937249591726604730771,
1.72375609122142383941560053139, 3.07600560339644968896983209855, 3.64117185564408647250120226607, 5.28570000664308299139072990897, 5.38399411451533275030919395810, 6.17128619299666342245971746841, 7.43182598798615811657779144185, 8.025976441242058752266083692730, 8.742523088544711655132981286625, 9.878791088042973451981796150152