L(s) = 1 | + (0.939 − 0.342i)2-s + (0.766 − 0.642i)4-s + (0.473 + 0.397i)5-s + (0.500 − 0.866i)8-s + (−0.939 − 0.342i)9-s + (0.580 + 0.211i)10-s + (0.280 + 1.59i)13-s + (0.173 − 0.984i)16-s + (1.52 − 0.553i)17-s − 18-s + 0.618·20-s + (−0.107 − 0.608i)25-s + (0.809 + 1.40i)26-s + (−1.52 − 0.553i)29-s + (−0.173 − 0.984i)32-s + ⋯ |
L(s) = 1 | + (0.939 − 0.342i)2-s + (0.766 − 0.642i)4-s + (0.473 + 0.397i)5-s + (0.500 − 0.866i)8-s + (−0.939 − 0.342i)9-s + (0.580 + 0.211i)10-s + (0.280 + 1.59i)13-s + (0.173 − 0.984i)16-s + (1.52 − 0.553i)17-s − 18-s + 0.618·20-s + (−0.107 − 0.608i)25-s + (0.809 + 1.40i)26-s + (−1.52 − 0.553i)29-s + (−0.173 − 0.984i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1444 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.872 + 0.489i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1444 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.872 + 0.489i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.007950949\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.007950949\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.939 + 0.342i)T \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 5 | \( 1 + (-0.473 - 0.397i)T + (0.173 + 0.984i)T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.280 - 1.59i)T + (-0.939 + 0.342i)T^{2} \) |
| 17 | \( 1 + (-1.52 + 0.553i)T + (0.766 - 0.642i)T^{2} \) |
| 23 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 29 | \( 1 + (1.52 + 0.553i)T + (0.766 + 0.642i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + 0.618T + T^{2} \) |
| 41 | \( 1 + (0.107 - 0.608i)T + (-0.939 - 0.342i)T^{2} \) |
| 43 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 47 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 53 | \( 1 + (0.473 - 0.397i)T + (0.173 - 0.984i)T^{2} \) |
| 59 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 61 | \( 1 + (1.23 - 1.04i)T + (0.173 - 0.984i)T^{2} \) |
| 67 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 71 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 73 | \( 1 + (-0.107 + 0.608i)T + (-0.939 - 0.342i)T^{2} \) |
| 79 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (0.107 + 0.608i)T + (-0.939 + 0.342i)T^{2} \) |
| 97 | \( 1 + (1.52 - 0.553i)T + (0.766 - 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.671332521210169977892011127355, −9.174601749312054818087718780487, −7.88436225515720016165497696312, −6.96312926370642743081648677156, −6.13939079854093484665350719257, −5.63056150096935075320905505067, −4.54347760472291183901769002211, −3.55805458109715855691361100858, −2.71126620787086906439744874980, −1.61205313937249591726604730771,
1.72375609122142383941560053139, 3.07600560339644968896983209855, 3.64117185564408647250120226607, 5.28570000664308299139072990897, 5.38399411451533275030919395810, 6.17128619299666342245971746841, 7.43182598798615811657779144185, 8.025976441242058752266083692730, 8.742523088544711655132981286625, 9.878791088042973451981796150152