L(s) = 1 | + 1.80i·2-s − 0.561i·3-s − 1.25·4-s + (0.178 − 2.22i)5-s + 1.01·6-s + 3.11i·7-s + 1.34i·8-s + 2.68·9-s + (4.01 + 0.321i)10-s + 5.61·11-s + 0.703i·12-s − 1.24i·13-s − 5.61·14-s + (−1.25 − 0.100i)15-s − 4.93·16-s + ⋯ |
L(s) = 1 | + 1.27i·2-s − 0.324i·3-s − 0.626·4-s + (0.0796 − 0.996i)5-s + 0.413·6-s + 1.17i·7-s + 0.476i·8-s + 0.894·9-s + (1.27 + 0.101i)10-s + 1.69·11-s + 0.203i·12-s − 0.346i·13-s − 1.49·14-s + (−0.323 − 0.0258i)15-s − 1.23·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0796 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0796 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.094121664\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.094121664\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.178 + 2.22i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 - 1.80iT - 2T^{2} \) |
| 3 | \( 1 + 0.561iT - 3T^{2} \) |
| 7 | \( 1 - 3.11iT - 7T^{2} \) |
| 11 | \( 1 - 5.61T + 11T^{2} \) |
| 13 | \( 1 + 1.24iT - 13T^{2} \) |
| 19 | \( 1 + 4T + 19T^{2} \) |
| 23 | \( 1 + 2.32iT - 23T^{2} \) |
| 29 | \( 1 - 6.62T + 29T^{2} \) |
| 31 | \( 1 - 4.55T + 31T^{2} \) |
| 37 | \( 1 - 1.90iT - 37T^{2} \) |
| 41 | \( 1 - 5.92T + 41T^{2} \) |
| 43 | \( 1 + 2.04iT - 43T^{2} \) |
| 47 | \( 1 - 4.85iT - 47T^{2} \) |
| 53 | \( 1 - 9.11iT - 53T^{2} \) |
| 59 | \( 1 + 6T + 59T^{2} \) |
| 61 | \( 1 - 5.65T + 61T^{2} \) |
| 67 | \( 1 - 8.46iT - 67T^{2} \) |
| 71 | \( 1 + 8.79T + 71T^{2} \) |
| 73 | \( 1 - 1.56iT - 73T^{2} \) |
| 79 | \( 1 + 4.91T + 79T^{2} \) |
| 83 | \( 1 + 3.94iT - 83T^{2} \) |
| 89 | \( 1 - 10.6T + 89T^{2} \) |
| 97 | \( 1 + 12.3iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.212628131510390724761480617492, −8.765051028346086558269146991044, −8.154835812460641944604232770760, −7.20501741500977452942458377601, −6.26248373426958390345212444944, −6.01756025923642748296664795802, −4.79252596947461487530513698523, −4.24079418450321334765332286245, −2.43116980635679018404134992694, −1.25071451876621200374146399375,
1.04940620802546342574655172915, 2.02930362778332854636379122518, 3.33378409688452242478373795601, 4.00331426845810679423517450880, 4.47716269252410670676391617901, 6.47033511266062858216457511780, 6.71148967542710863736343278666, 7.58741347106718714168213786347, 8.962169286096430080025993633124, 9.756419001771142555887772462354