L(s) = 1 | + 1.80i·2-s − 0.561i·3-s − 1.25·4-s + (0.178 − 2.22i)5-s + 1.01·6-s + 3.11i·7-s + 1.34i·8-s + 2.68·9-s + (4.01 + 0.321i)10-s + 5.61·11-s + 0.703i·12-s − 1.24i·13-s − 5.61·14-s + (−1.25 − 0.100i)15-s − 4.93·16-s + ⋯ |
L(s) = 1 | + 1.27i·2-s − 0.324i·3-s − 0.626·4-s + (0.0796 − 0.996i)5-s + 0.413·6-s + 1.17i·7-s + 0.476i·8-s + 0.894·9-s + (1.27 + 0.101i)10-s + 1.69·11-s + 0.203i·12-s − 0.346i·13-s − 1.49·14-s + (−0.323 − 0.0258i)15-s − 1.23·16-s + ⋯ |
Λ(s)=(=(1445s/2ΓC(s)L(s)(0.0796−0.996i)Λ(2−s)
Λ(s)=(=(1445s/2ΓC(s+1/2)L(s)(0.0796−0.996i)Λ(1−s)
Degree: |
2 |
Conductor: |
1445
= 5⋅172
|
Sign: |
0.0796−0.996i
|
Analytic conductor: |
11.5383 |
Root analytic conductor: |
3.39681 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1445(579,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1445, ( :1/2), 0.0796−0.996i)
|
Particular Values
L(1) |
≈ |
2.094121664 |
L(21) |
≈ |
2.094121664 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−0.178+2.22i)T |
| 17 | 1 |
good | 2 | 1−1.80iT−2T2 |
| 3 | 1+0.561iT−3T2 |
| 7 | 1−3.11iT−7T2 |
| 11 | 1−5.61T+11T2 |
| 13 | 1+1.24iT−13T2 |
| 19 | 1+4T+19T2 |
| 23 | 1+2.32iT−23T2 |
| 29 | 1−6.62T+29T2 |
| 31 | 1−4.55T+31T2 |
| 37 | 1−1.90iT−37T2 |
| 41 | 1−5.92T+41T2 |
| 43 | 1+2.04iT−43T2 |
| 47 | 1−4.85iT−47T2 |
| 53 | 1−9.11iT−53T2 |
| 59 | 1+6T+59T2 |
| 61 | 1−5.65T+61T2 |
| 67 | 1−8.46iT−67T2 |
| 71 | 1+8.79T+71T2 |
| 73 | 1−1.56iT−73T2 |
| 79 | 1+4.91T+79T2 |
| 83 | 1+3.94iT−83T2 |
| 89 | 1−10.6T+89T2 |
| 97 | 1+12.3iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.212628131510390724761480617492, −8.765051028346086558269146991044, −8.154835812460641944604232770760, −7.20501741500977452942458377601, −6.26248373426958390345212444944, −6.01756025923642748296664795802, −4.79252596947461487530513698523, −4.24079418450321334765332286245, −2.43116980635679018404134992694, −1.25071451876621200374146399375,
1.04940620802546342574655172915, 2.02930362778332854636379122518, 3.33378409688452242478373795601, 4.00331426845810679423517450880, 4.47716269252410670676391617901, 6.47033511266062858216457511780, 6.71148967542710863736343278666, 7.58741347106718714168213786347, 8.962169286096430080025993633124, 9.756419001771142555887772462354