L(s) = 1 | − 2·4-s − 5·5-s + 4·7-s + 8-s + 5·11-s + 7·13-s + 2·16-s − 12·17-s + 3·19-s + 10·20-s + 4·23-s + 6·25-s − 8·28-s − 6·29-s + 4·31-s − 2·32-s − 20·35-s + 20·37-s − 5·40-s − 3·41-s + 9·43-s − 10·44-s − 7·47-s + 10·49-s − 14·52-s + 6·53-s − 25·55-s + ⋯ |
L(s) = 1 | − 4-s − 2.23·5-s + 1.51·7-s + 0.353·8-s + 1.50·11-s + 1.94·13-s + 1/2·16-s − 2.91·17-s + 0.688·19-s + 2.23·20-s + 0.834·23-s + 6/5·25-s − 1.51·28-s − 1.11·29-s + 0.718·31-s − 0.353·32-s − 3.38·35-s + 3.28·37-s − 0.790·40-s − 0.468·41-s + 1.37·43-s − 1.50·44-s − 1.02·47-s + 10/7·49-s − 1.94·52-s + 0.824·53-s − 3.37·55-s + ⋯ |
Λ(s)=(=((38⋅74⋅234)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((38⋅74⋅234)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
38⋅74⋅234
|
Sign: |
1
|
Analytic conductor: |
17921.8 |
Root analytic conductor: |
3.40151 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 38⋅74⋅234, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.213325244 |
L(21) |
≈ |
3.213325244 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 7 | C1 | (1−T)4 |
| 23 | C1 | (1−T)4 |
good | 2 | C2≀S4 | 1+pT2−T3+pT4−pT5+p3T6+p4T8 |
| 5 | C2≀S4 | 1+pT+19T2+61T3+148T4+61pT5+19p2T6+p4T7+p4T8 |
| 11 | C2≀S4 | 1−5T+35T2−100T3+460T4−100pT5+35p2T6−5p3T7+p4T8 |
| 13 | C2≀S4 | 1−7T+41T2−121T3+492T4−121pT5+41p2T6−7p3T7+p4T8 |
| 17 | C2≀S4 | 1+12T+105T2+602T3+2888T4+602pT5+105p2T6+12p3T7+p4T8 |
| 19 | C2≀S4 | 1−3T+39T2−120T3+812T4−120pT5+39p2T6−3p3T7+p4T8 |
| 29 | C2≀S4 | 1+6T+85T2+258T3+2812T4+258pT5+85p2T6+6p3T7+p4T8 |
| 31 | C2≀S4 | 1−4T+113T2−326T3+5068T4−326pT5+113p2T6−4p3T7+p4T8 |
| 37 | C2≀S4 | 1−20T+239T2−1940T3+13080T4−1940pT5+239p2T6−20p3T7+p4T8 |
| 41 | C2≀S4 | 1+3T+137T2+298T3+7838T4+298pT5+137p2T6+3p3T7+p4T8 |
| 43 | C2≀S4 | 1−9T+133T2−977T3+8012T4−977pT5+133p2T6−9p3T7+p4T8 |
| 47 | C2≀S4 | 1+7T+194T2+959T3+13786T4+959pT5+194p2T6+7p3T7+p4T8 |
| 53 | C2≀S4 | 1−6T+144T2−705T3+9444T4−705pT5+144p2T6−6p3T7+p4T8 |
| 59 | C2≀S4 | 1−2T−42T2−91T3+5646T4−91pT5−42p2T6−2p3T7+p4T8 |
| 61 | C2≀S4 | 1−24T+416T2−4583T3+42024T4−4583pT5+416p2T6−24p3T7+p4T8 |
| 67 | C2≀S4 | 1−T+127T2−225T3+12248T4−225pT5+127p2T6−p3T7+p4T8 |
| 71 | C2≀S4 | 1−17T+363T2−3749T3+41528T4−3749pT5+363p2T6−17p3T7+p4T8 |
| 73 | C2≀S4 | 1−16T+197T2−1234T3+11448T4−1234pT5+197p2T6−16p3T7+p4T8 |
| 79 | C2≀S4 | 1+10T+299T2+2156T3+34888T4+2156pT5+299p2T6+10p3T7+p4T8 |
| 83 | C2≀S4 | 1+8T+137T2−458T3+1708T4−458pT5+137p2T6+8p3T7+p4T8 |
| 89 | C2≀S4 | 1−3T+243T2−1181T3+27320T4−1181pT5+243p2T6−3p3T7+p4T8 |
| 97 | C2≀S4 | 1+2T+301T2+226T3+39580T4+226pT5+301p2T6+2p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.75482314270277489328946716004, −6.54188593670510091225262653045, −6.26527625400123745309812827712, −6.21593634501715843295262002119, −6.18857255069453120421485758447, −5.61542048682272155027672847041, −5.33389264968437426012314506799, −5.21730686776054707791465178814, −4.87612297281730863126342357551, −4.67677228673703421201738031280, −4.44001302761881934070506937183, −4.24006939781376570562638045585, −4.14542886113682980717603561464, −3.88364053689209564595947871843, −3.82074467726599430102288110264, −3.47262107097778259514272468392, −3.44467052638250643823348991228, −2.66325502998751394349493692560, −2.60555125049593158330926400402, −2.17753329320047194668244540053, −1.76591910803781584328621050263, −1.61667524175534746634977226468, −0.857669742248525348815589827704, −0.828487297195982993622951530321, −0.55750122907402016844331512209,
0.55750122907402016844331512209, 0.828487297195982993622951530321, 0.857669742248525348815589827704, 1.61667524175534746634977226468, 1.76591910803781584328621050263, 2.17753329320047194668244540053, 2.60555125049593158330926400402, 2.66325502998751394349493692560, 3.44467052638250643823348991228, 3.47262107097778259514272468392, 3.82074467726599430102288110264, 3.88364053689209564595947871843, 4.14542886113682980717603561464, 4.24006939781376570562638045585, 4.44001302761881934070506937183, 4.67677228673703421201738031280, 4.87612297281730863126342357551, 5.21730686776054707791465178814, 5.33389264968437426012314506799, 5.61542048682272155027672847041, 6.18857255069453120421485758447, 6.21593634501715843295262002119, 6.26527625400123745309812827712, 6.54188593670510091225262653045, 6.75482314270277489328946716004