Properties

Label 1449.2.a.p
Level 14491449
Weight 22
Character orbit 1449.a
Self dual yes
Analytic conductor 11.57011.570
Analytic rank 00
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1449,2,Mod(1,1449)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1449, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1449.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1449=32723 1449 = 3^{2} \cdot 7 \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1449.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 11.570323252911.5703232529
Analytic rank: 00
Dimension: 44
Coefficient field: 4.4.24197.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x46x2x+2 x^{4} - 6x^{2} - x + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 483)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+(β2+1)q4+(β31)q5+q7+(β3+β1+1)q8+(β2β1+1)q10+(β3+β2+1)q11+(β3+β2β1+2)q13++β1q98+O(q100) q + \beta_1 q^{2} + (\beta_{2} + 1) q^{4} + (\beta_{3} - 1) q^{5} + q^{7} + (\beta_{3} + \beta_1 + 1) q^{8} + (\beta_{2} - \beta_1 + 1) q^{10} + ( - \beta_{3} + \beta_{2} + 1) q^{11} + (\beta_{3} + \beta_{2} - \beta_1 + 2) q^{13}+ \cdots + \beta_1 q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q45q5+4q7+3q8+4q10+5q11+7q13+8q1612q17+3q19+q20q22+4q23+7q255q26+4q286q29+4q31+6q32+2q97+O(q100) 4 q + 4 q^{4} - 5 q^{5} + 4 q^{7} + 3 q^{8} + 4 q^{10} + 5 q^{11} + 7 q^{13} + 8 q^{16} - 12 q^{17} + 3 q^{19} + q^{20} - q^{22} + 4 q^{23} + 7 q^{25} - 5 q^{26} + 4 q^{28} - 6 q^{29} + 4 q^{31} + 6 q^{32}+ \cdots - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x46x2x+2 x^{4} - 6x^{2} - x + 2 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν23 \nu^{2} - 3 Copy content Toggle raw display
β3\beta_{3}== ν35ν1 \nu^{3} - 5\nu - 1 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+3 \beta_{2} + 3 Copy content Toggle raw display
ν3\nu^{3}== β3+5β1+1 \beta_{3} + 5\beta _1 + 1 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.27460
−0.700017
0.509552
2.46506
−2.27460 0 3.17380 −2.39532 0 1.00000 −2.66992 0 5.44840
1.2 −0.700017 0 −1.50998 1.15706 0 1.00000 2.45704 0 −0.809960
1.3 0.509552 0 −1.74036 −4.41546 0 1.00000 −1.90591 0 −2.24991
1.4 2.46506 0 4.07653 0.653724 0 1.00000 5.11879 0 1.61147
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
77 1 -1
2323 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1449.2.a.p 4
3.b odd 2 1 483.2.a.i 4
12.b even 2 1 7728.2.a.cd 4
21.c even 2 1 3381.2.a.w 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
483.2.a.i 4 3.b odd 2 1
1449.2.a.p 4 1.a even 1 1 trivial
3381.2.a.w 4 21.c even 2 1
7728.2.a.cd 4 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(1449))S_{2}^{\mathrm{new}}(\Gamma_0(1449)):

T246T22T2+2 T_{2}^{4} - 6T_{2}^{2} - T_{2} + 2 Copy content Toggle raw display
T54+5T53T5214T5+8 T_{5}^{4} + 5T_{5}^{3} - T_{5}^{2} - 14T_{5} + 8 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T46T2T+2 T^{4} - 6T^{2} - T + 2 Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4+5T3++8 T^{4} + 5 T^{3} + \cdots + 8 Copy content Toggle raw display
77 (T1)4 (T - 1)^{4} Copy content Toggle raw display
1111 T45T3+68 T^{4} - 5 T^{3} + \cdots - 68 Copy content Toggle raw display
1313 T47T3+236 T^{4} - 7 T^{3} + \cdots - 236 Copy content Toggle raw display
1717 T4+12T3+104 T^{4} + 12 T^{3} + \cdots - 104 Copy content Toggle raw display
1919 T43T3++52 T^{4} - 3 T^{3} + \cdots + 52 Copy content Toggle raw display
2323 (T1)4 (T - 1)^{4} Copy content Toggle raw display
2929 T4+6T3+436 T^{4} + 6 T^{3} + \cdots - 436 Copy content Toggle raw display
3131 T44T3+16 T^{4} - 4 T^{3} + \cdots - 16 Copy content Toggle raw display
3737 T420T3+1868 T^{4} - 20 T^{3} + \cdots - 1868 Copy content Toggle raw display
4141 T4+3T3+34 T^{4} + 3 T^{3} + \cdots - 34 Copy content Toggle raw display
4343 T49T3++272 T^{4} - 9 T^{3} + \cdots + 272 Copy content Toggle raw display
4747 T4+7T3+32 T^{4} + 7 T^{3} + \cdots - 32 Copy content Toggle raw display
5353 T46T3+202 T^{4} - 6 T^{3} + \cdots - 202 Copy content Toggle raw display
5959 T42T3++17564 T^{4} - 2 T^{3} + \cdots + 17564 Copy content Toggle raw display
6161 T424T3+1286 T^{4} - 24 T^{3} + \cdots - 1286 Copy content Toggle raw display
6767 T4T3++4208 T^{4} - T^{3} + \cdots + 4208 Copy content Toggle raw display
7171 T417T3++64 T^{4} - 17 T^{3} + \cdots + 64 Copy content Toggle raw display
7373 T416T3+6656 T^{4} - 16 T^{3} + \cdots - 6656 Copy content Toggle raw display
7979 T4+10T3++128 T^{4} + 10 T^{3} + \cdots + 128 Copy content Toggle raw display
8383 T4+8T3+7256 T^{4} + 8 T^{3} + \cdots - 7256 Copy content Toggle raw display
8989 T43T3+92 T^{4} - 3 T^{3} + \cdots - 92 Copy content Toggle raw display
9797 T4+2T3++4 T^{4} + 2 T^{3} + \cdots + 4 Copy content Toggle raw display
show more
show less