Properties

Label 2-1450-1.1-c1-0-30
Degree $2$
Conductor $1450$
Sign $-1$
Analytic cond. $11.5783$
Root an. cond. $3.40269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2.30·3-s + 4-s − 2.30·6-s − 0.697·7-s + 8-s + 2.30·9-s + 2.60·11-s − 2.30·12-s − 6.30·13-s − 0.697·14-s + 16-s + 3.90·17-s + 2.30·18-s − 0.605·19-s + 1.60·21-s + 2.60·22-s − 1.69·23-s − 2.30·24-s − 6.30·26-s + 1.60·27-s − 0.697·28-s + 29-s − 7.90·31-s + 32-s − 6·33-s + 3.90·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.32·3-s + 0.5·4-s − 0.940·6-s − 0.263·7-s + 0.353·8-s + 0.767·9-s + 0.785·11-s − 0.664·12-s − 1.74·13-s − 0.186·14-s + 0.250·16-s + 0.947·17-s + 0.542·18-s − 0.138·19-s + 0.350·21-s + 0.555·22-s − 0.353·23-s − 0.470·24-s − 1.23·26-s + 0.308·27-s − 0.131·28-s + 0.185·29-s − 1.42·31-s + 0.176·32-s − 1.04·33-s + 0.670·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1450\)    =    \(2 \cdot 5^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(11.5783\)
Root analytic conductor: \(3.40269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 \)
29 \( 1 - T \)
good3 \( 1 + 2.30T + 3T^{2} \)
7 \( 1 + 0.697T + 7T^{2} \)
11 \( 1 - 2.60T + 11T^{2} \)
13 \( 1 + 6.30T + 13T^{2} \)
17 \( 1 - 3.90T + 17T^{2} \)
19 \( 1 + 0.605T + 19T^{2} \)
23 \( 1 + 1.69T + 23T^{2} \)
31 \( 1 + 7.90T + 31T^{2} \)
37 \( 1 + 9.81T + 37T^{2} \)
41 \( 1 + 8.60T + 41T^{2} \)
43 \( 1 + 3.30T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 - 3.90T + 53T^{2} \)
59 \( 1 + 0.908T + 59T^{2} \)
61 \( 1 + 3.09T + 61T^{2} \)
67 \( 1 - 9.21T + 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 2.51T + 73T^{2} \)
79 \( 1 + 4.90T + 79T^{2} \)
83 \( 1 - 8.60T + 83T^{2} \)
89 \( 1 + 14.6T + 89T^{2} \)
97 \( 1 + 1.09T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.407990081614753518438997617253, −8.122977075012076541251019641000, −6.99003145307253373700181367280, −6.70473469805233267182206547619, −5.49718281366288437666415243477, −5.22680105345781307133436841878, −4.18060447012509745400533690702, −3.12032659178808281312473073020, −1.69465286739611247746851171454, 0, 1.69465286739611247746851171454, 3.12032659178808281312473073020, 4.18060447012509745400533690702, 5.22680105345781307133436841878, 5.49718281366288437666415243477, 6.70473469805233267182206547619, 6.99003145307253373700181367280, 8.122977075012076541251019641000, 9.407990081614753518438997617253

Graph of the $Z$-function along the critical line