Properties

Label 1450.2.a.m
Level $1450$
Weight $2$
Character orbit 1450.a
Self dual yes
Analytic conductor $11.578$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1450,2,Mod(1,1450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1450.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1450 = 2 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1450.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5783082931\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 290)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{13})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - \beta q^{3} + q^{4} - \beta q^{6} + (\beta - 3) q^{7} + q^{8} + \beta q^{9} + (2 \beta - 2) q^{11} - \beta q^{12} + ( - \beta - 4) q^{13} + (\beta - 3) q^{14} + q^{16} + (3 \beta - 3) q^{17} + \cdots + 6 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - q^{3} + 2 q^{4} - q^{6} - 5 q^{7} + 2 q^{8} + q^{9} - 2 q^{11} - q^{12} - 9 q^{13} - 5 q^{14} + 2 q^{16} - 3 q^{17} + q^{18} + 6 q^{19} - 4 q^{21} - 2 q^{22} - 7 q^{23} - q^{24} - 9 q^{26}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.30278
−1.30278
1.00000 −2.30278 1.00000 0 −2.30278 −0.697224 1.00000 2.30278 0
1.2 1.00000 1.30278 1.00000 0 1.30278 −4.30278 1.00000 −1.30278 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1450.2.a.m 2
5.b even 2 1 290.2.a.b 2
5.c odd 4 2 1450.2.b.g 4
15.d odd 2 1 2610.2.a.v 2
20.d odd 2 1 2320.2.a.i 2
40.e odd 2 1 9280.2.a.bc 2
40.f even 2 1 9280.2.a.z 2
145.d even 2 1 8410.2.a.r 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
290.2.a.b 2 5.b even 2 1
1450.2.a.m 2 1.a even 1 1 trivial
1450.2.b.g 4 5.c odd 4 2
2320.2.a.i 2 20.d odd 2 1
2610.2.a.v 2 15.d odd 2 1
8410.2.a.r 2 145.d even 2 1
9280.2.a.z 2 40.f even 2 1
9280.2.a.bc 2 40.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1450))\):

\( T_{3}^{2} + T_{3} - 3 \) Copy content Toggle raw display
\( T_{7}^{2} + 5T_{7} + 3 \) Copy content Toggle raw display
\( T_{13}^{2} + 9T_{13} + 17 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T - 3 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 5T + 3 \) Copy content Toggle raw display
$11$ \( T^{2} + 2T - 12 \) Copy content Toggle raw display
$13$ \( T^{2} + 9T + 17 \) Copy content Toggle raw display
$17$ \( T^{2} + 3T - 27 \) Copy content Toggle raw display
$19$ \( T^{2} - 6T - 4 \) Copy content Toggle raw display
$23$ \( T^{2} + 7T + 9 \) Copy content Toggle raw display
$29$ \( (T - 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 5T - 23 \) Copy content Toggle raw display
$37$ \( T^{2} - 2T - 116 \) Copy content Toggle raw display
$41$ \( T^{2} + 10T + 12 \) Copy content Toggle raw display
$43$ \( T^{2} + 3T - 1 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 3T - 27 \) Copy content Toggle raw display
$59$ \( T^{2} - 9T - 9 \) Copy content Toggle raw display
$61$ \( T^{2} + 17T + 43 \) Copy content Toggle raw display
$67$ \( T^{2} - 4T - 48 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 13T - 39 \) Copy content Toggle raw display
$79$ \( T^{2} - T - 29 \) Copy content Toggle raw display
$83$ \( T^{2} - 10T + 12 \) Copy content Toggle raw display
$89$ \( T^{2} + 22T + 108 \) Copy content Toggle raw display
$97$ \( T^{2} + 13T + 13 \) Copy content Toggle raw display
show more
show less