Properties

Label 2-1450-29.28-c1-0-25
Degree $2$
Conductor $1450$
Sign $-0.371 + 0.928i$
Analytic cond. $11.5783$
Root an. cond. $3.40269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s − 4·7-s + i·8-s + 3·9-s + 2i·11-s + 2·13-s + 4i·14-s + 16-s − 6i·17-s − 3i·18-s + 2i·19-s + 2·22-s − 2i·26-s + 4·28-s + (5 + 2i)29-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s − 1.51·7-s + 0.353i·8-s + 9-s + 0.603i·11-s + 0.554·13-s + 1.06i·14-s + 0.250·16-s − 1.45i·17-s − 0.707i·18-s + 0.458i·19-s + 0.426·22-s − 0.392i·26-s + 0.755·28-s + (0.928 + 0.371i)29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.371 + 0.928i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.371 + 0.928i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1450\)    =    \(2 \cdot 5^{2} \cdot 29\)
Sign: $-0.371 + 0.928i$
Analytic conductor: \(11.5783\)
Root analytic conductor: \(3.40269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1450} (1101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1450,\ (\ :1/2),\ -0.371 + 0.928i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.209397047\)
\(L(\frac12)\) \(\approx\) \(1.209397047\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
5 \( 1 \)
29 \( 1 + (-5 - 2i)T \)
good3 \( 1 - 3T^{2} \)
7 \( 1 + 4T + 7T^{2} \)
11 \( 1 - 2iT - 11T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
17 \( 1 + 6iT - 17T^{2} \)
19 \( 1 - 2iT - 19T^{2} \)
23 \( 1 + 23T^{2} \)
31 \( 1 + 10iT - 31T^{2} \)
37 \( 1 - 6iT - 37T^{2} \)
41 \( 1 + 12iT - 41T^{2} \)
43 \( 1 + 4iT - 43T^{2} \)
47 \( 1 + 8iT - 47T^{2} \)
53 \( 1 - 2T + 53T^{2} \)
59 \( 1 + 12T + 59T^{2} \)
61 \( 1 + 4iT - 61T^{2} \)
67 \( 1 - 8T + 67T^{2} \)
71 \( 1 + 8T + 71T^{2} \)
73 \( 1 - 2iT - 73T^{2} \)
79 \( 1 + 10iT - 79T^{2} \)
83 \( 1 - 4T + 83T^{2} \)
89 \( 1 + 12iT - 89T^{2} \)
97 \( 1 + 2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.522242476177773885222778169512, −8.796684371423942440967441279508, −7.54516099766407673129006049633, −6.88810573446898751564299525664, −6.01987737866691909460284054105, −4.87813054722592132991634827308, −3.95296254505788711220411590717, −3.15899281988744824562927099714, −2.06129268661854677775419839084, −0.56237463239819935227973816108, 1.18630674931797418028301708653, 3.01520635953195875273714582466, 3.82405499877116359613216282805, 4.74879272076075981508326432880, 6.11840766913588807776105168338, 6.33091167843160679979236526602, 7.19737052362686052325325916873, 8.175731941488967674597448114890, 8.909551996272712047639285244018, 9.703441520681004803411733491392

Graph of the $Z$-function along the critical line