Properties

Label 1450.2.c.b
Level 14501450
Weight 22
Character orbit 1450.c
Analytic conductor 11.57811.578
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1450,2,Mod(1101,1450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1450.1101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 1450=25229 1450 = 2 \cdot 5^{2} \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1450.c (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,0,0,-8,0,6,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 11.578308293111.5783082931
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 290)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+iq2q44q7iq8+3q92iq11+2q134iq14+q16+6iq17+3iq182iq19+2q22+2iq26+4q28+(2i+5)q29+10iq31+6iq99+O(q100) q + i q^{2} - q^{4} - 4 q^{7} - i q^{8} + 3 q^{9} - 2 i q^{11} + 2 q^{13} - 4 i q^{14} + q^{16} + 6 i q^{17} + 3 i q^{18} - 2 i q^{19} + 2 q^{22} + 2 i q^{26} + 4 q^{28} + ( - 2 i + 5) q^{29} + 10 i q^{31} + \cdots - 6 i q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q48q7+6q9+4q13+2q16+4q22+8q28+10q2912q346q36+4q38+18q494q52+4q53+4q5824q5920q6224q63+16q94+O(q100) 2 q - 2 q^{4} - 8 q^{7} + 6 q^{9} + 4 q^{13} + 2 q^{16} + 4 q^{22} + 8 q^{28} + 10 q^{29} - 12 q^{34} - 6 q^{36} + 4 q^{38} + 18 q^{49} - 4 q^{52} + 4 q^{53} + 4 q^{58} - 24 q^{59} - 20 q^{62} - 24 q^{63}+ \cdots - 16 q^{94}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1450Z)×\left(\mathbb{Z}/1450\mathbb{Z}\right)^\times.

nn 901901 12771277
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1101.1
1.00000i
1.00000i
1.00000i 0 −1.00000 0 0 −4.00000 1.00000i 3.00000 0
1101.2 1.00000i 0 −1.00000 0 0 −4.00000 1.00000i 3.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1450.2.c.b 2
5.b even 2 1 290.2.c.a 2
5.c odd 4 1 1450.2.d.a 2
5.c odd 4 1 1450.2.d.d 2
15.d odd 2 1 2610.2.f.c 2
20.d odd 2 1 2320.2.g.a 2
29.b even 2 1 inner 1450.2.c.b 2
145.d even 2 1 290.2.c.a 2
145.f odd 4 1 8410.2.a.e 1
145.f odd 4 1 8410.2.a.l 1
145.h odd 4 1 1450.2.d.a 2
145.h odd 4 1 1450.2.d.d 2
435.b odd 2 1 2610.2.f.c 2
580.e odd 2 1 2320.2.g.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
290.2.c.a 2 5.b even 2 1
290.2.c.a 2 145.d even 2 1
1450.2.c.b 2 1.a even 1 1 trivial
1450.2.c.b 2 29.b even 2 1 inner
1450.2.d.a 2 5.c odd 4 1
1450.2.d.a 2 145.h odd 4 1
1450.2.d.d 2 5.c odd 4 1
1450.2.d.d 2 145.h odd 4 1
2320.2.g.a 2 20.d odd 2 1
2320.2.g.a 2 580.e odd 2 1
2610.2.f.c 2 15.d odd 2 1
2610.2.f.c 2 435.b odd 2 1
8410.2.a.e 1 145.f odd 4 1
8410.2.a.l 1 145.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1450,[χ])S_{2}^{\mathrm{new}}(1450, [\chi]):

T3 T_{3} Copy content Toggle raw display
T7+4 T_{7} + 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+1 T^{2} + 1 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
1111 T2+4 T^{2} + 4 Copy content Toggle raw display
1313 (T2)2 (T - 2)^{2} Copy content Toggle raw display
1717 T2+36 T^{2} + 36 Copy content Toggle raw display
1919 T2+4 T^{2} + 4 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T210T+29 T^{2} - 10T + 29 Copy content Toggle raw display
3131 T2+100 T^{2} + 100 Copy content Toggle raw display
3737 T2+36 T^{2} + 36 Copy content Toggle raw display
4141 T2+144 T^{2} + 144 Copy content Toggle raw display
4343 T2+16 T^{2} + 16 Copy content Toggle raw display
4747 T2+64 T^{2} + 64 Copy content Toggle raw display
5353 (T2)2 (T - 2)^{2} Copy content Toggle raw display
5959 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
6161 T2+16 T^{2} + 16 Copy content Toggle raw display
6767 (T8)2 (T - 8)^{2} Copy content Toggle raw display
7171 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
7373 T2+4 T^{2} + 4 Copy content Toggle raw display
7979 T2+100 T^{2} + 100 Copy content Toggle raw display
8383 (T4)2 (T - 4)^{2} Copy content Toggle raw display
8989 T2+144 T^{2} + 144 Copy content Toggle raw display
9797 T2+4 T^{2} + 4 Copy content Toggle raw display
show more
show less