Properties

Label 2-1458-3.2-c2-0-44
Degree $2$
Conductor $1458$
Sign $1$
Analytic cond. $39.7276$
Root an. cond. $6.30298$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41i·2-s − 2.00·4-s + 0.589i·5-s − 3.15·7-s − 2.82i·8-s − 0.833·10-s + 9.38i·11-s + 12.2·13-s − 4.45i·14-s + 4.00·16-s − 28.3i·17-s − 22.4·19-s − 1.17i·20-s − 13.2·22-s + 10.0i·23-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.500·4-s + 0.117i·5-s − 0.450·7-s − 0.353i·8-s − 0.0833·10-s + 0.853i·11-s + 0.939·13-s − 0.318i·14-s + 0.250·16-s − 1.66i·17-s − 1.17·19-s − 0.0589i·20-s − 0.603·22-s + 0.437i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1458 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1458 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1458\)    =    \(2 \cdot 3^{6}\)
Sign: $1$
Analytic conductor: \(39.7276\)
Root analytic conductor: \(6.30298\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1458} (1457, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1458,\ (\ :1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.438846502\)
\(L(\frac12)\) \(\approx\) \(1.438846502\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 1.41iT \)
3 \( 1 \)
good5 \( 1 - 0.589iT - 25T^{2} \)
7 \( 1 + 3.15T + 49T^{2} \)
11 \( 1 - 9.38iT - 121T^{2} \)
13 \( 1 - 12.2T + 169T^{2} \)
17 \( 1 + 28.3iT - 289T^{2} \)
19 \( 1 + 22.4T + 361T^{2} \)
23 \( 1 - 10.0iT - 529T^{2} \)
29 \( 1 + 24.0iT - 841T^{2} \)
31 \( 1 + 45.4T + 961T^{2} \)
37 \( 1 - 31.5T + 1.36e3T^{2} \)
41 \( 1 + 70.8iT - 1.68e3T^{2} \)
43 \( 1 + 14.5T + 1.84e3T^{2} \)
47 \( 1 - 55.3iT - 2.20e3T^{2} \)
53 \( 1 + 25.4iT - 2.80e3T^{2} \)
59 \( 1 - 28.6iT - 3.48e3T^{2} \)
61 \( 1 - 113.T + 3.72e3T^{2} \)
67 \( 1 - 50.0T + 4.48e3T^{2} \)
71 \( 1 + 8.77iT - 5.04e3T^{2} \)
73 \( 1 - 23.4T + 5.32e3T^{2} \)
79 \( 1 - 132.T + 6.24e3T^{2} \)
83 \( 1 + 67.1iT - 6.88e3T^{2} \)
89 \( 1 + 72.7iT - 7.92e3T^{2} \)
97 \( 1 - 157.T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.255124765875452977460008835492, −8.550255336818476996399552360242, −7.52181051194335801009442542334, −6.93480516309525032069332354432, −6.17841647564885302023106813805, −5.24305744217178257583950306486, −4.36577531628789120151368123607, −3.40011536886970913730143861660, −2.14380287870122546436372983843, −0.50619688218407664804053777712, 0.940938014598044732413071589097, 2.08756476468498690097528654399, 3.37516057797265839630333079647, 3.90116021395459799261367875647, 5.06956105860214646569182316522, 6.12044057673371334387601414826, 6.63441501924639036909862771740, 8.168596304264759261091712993550, 8.526800945680272487566451660429, 9.302705205065056171966315989244

Graph of the $Z$-function along the critical line