L(s) = 1 | + (0.623 + 0.781i)3-s + (−0.900 + 0.433i)4-s + (−0.222 − 0.974i)7-s + (−0.222 + 0.974i)9-s + (−0.900 − 0.433i)12-s + (−0.277 − 1.21i)13-s + (0.623 − 0.781i)16-s − 0.445·19-s + (0.623 − 0.781i)21-s + (−0.222 + 0.974i)25-s + (−0.900 + 0.433i)27-s + (0.623 + 0.781i)28-s − 1.80·31-s + (−0.222 − 0.974i)36-s + (1.62 + 0.781i)37-s + ⋯ |
L(s) = 1 | + (0.623 + 0.781i)3-s + (−0.900 + 0.433i)4-s + (−0.222 − 0.974i)7-s + (−0.222 + 0.974i)9-s + (−0.900 − 0.433i)12-s + (−0.277 − 1.21i)13-s + (0.623 − 0.781i)16-s − 0.445·19-s + (0.623 − 0.781i)21-s + (−0.222 + 0.974i)25-s + (−0.900 + 0.433i)27-s + (0.623 + 0.781i)28-s − 1.80·31-s + (−0.222 − 0.974i)36-s + (1.62 + 0.781i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.801 - 0.598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.801 - 0.598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6282494600\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6282494600\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.623 - 0.781i)T \) |
| 7 | \( 1 + (0.222 + 0.974i)T \) |
good | 2 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 5 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 11 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 13 | \( 1 + (0.277 + 1.21i)T + (-0.900 + 0.433i)T^{2} \) |
| 17 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 19 | \( 1 + 0.445T + T^{2} \) |
| 23 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 29 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 31 | \( 1 + 1.80T + T^{2} \) |
| 37 | \( 1 + (-1.62 - 0.781i)T + (0.623 + 0.781i)T^{2} \) |
| 41 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 43 | \( 1 + (0.277 - 0.347i)T + (-0.222 - 0.974i)T^{2} \) |
| 47 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 53 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 59 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 61 | \( 1 + (-1.62 - 0.781i)T + (0.623 + 0.781i)T^{2} \) |
| 67 | \( 1 - 1.24T + T^{2} \) |
| 71 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 73 | \( 1 + (-0.400 + 1.75i)T + (-0.900 - 0.433i)T^{2} \) |
| 79 | \( 1 + 1.80T + T^{2} \) |
| 83 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 89 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 97 | \( 1 + 0.445T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.29857992924145003477403868077, −12.88644052026460720973490967709, −11.14616323085050135116168379626, −10.13298575402331494128947906773, −9.399419790678040583871006831579, −8.245582394742496889386483699207, −7.43547382881228174632113469317, −5.37823019688536841080327108404, −4.19462357919782614420479415634, −3.21284140013096734124203552472,
2.17226243928963024610178804391, 4.02941450391131317545777145254, 5.62358814613490033814542175522, 6.74045206617909125982328451203, 8.202845077853546682508785480288, 9.056450249933553734618448309680, 9.716622130236253542420350773433, 11.39023318691897282337833823622, 12.51042067151936381790558136735, 13.12847629958155816232984445796