L(s) = 1 | + 2-s + (−0.707 − 1.58i)3-s + 4-s + (1.41 + 1.73i)5-s + (−0.707 − 1.58i)6-s + 8-s + (−2.00 + 2.23i)9-s + (1.41 + 1.73i)10-s + 4.68i·11-s + (−0.707 − 1.58i)12-s + 1.04·13-s + (1.73 − 3.46i)15-s + 16-s − 3.16i·17-s + (−2.00 + 2.23i)18-s − 1.43i·19-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (−0.408 − 0.912i)3-s + 0.5·4-s + (0.632 + 0.774i)5-s + (−0.288 − 0.645i)6-s + 0.353·8-s + (−0.666 + 0.745i)9-s + (0.447 + 0.547i)10-s + 1.41i·11-s + (−0.204 − 0.456i)12-s + 0.289·13-s + (0.448 − 0.893i)15-s + 0.250·16-s − 0.766i·17-s + (−0.471 + 0.527i)18-s − 0.328i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.924 - 0.381i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.924 - 0.381i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.506843710\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.506843710\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + (0.707 + 1.58i)T \) |
| 5 | \( 1 + (-1.41 - 1.73i)T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 - 4.68iT - 11T^{2} \) |
| 13 | \( 1 - 1.04T + 13T^{2} \) |
| 17 | \( 1 + 3.16iT - 17T^{2} \) |
| 19 | \( 1 + 1.43iT - 19T^{2} \) |
| 23 | \( 1 - 4.47T + 23T^{2} \) |
| 29 | \( 1 - 6.92iT - 29T^{2} \) |
| 31 | \( 1 - 6.62iT - 31T^{2} \) |
| 37 | \( 1 - 2.66iT - 37T^{2} \) |
| 41 | \( 1 + 1.04T + 41T^{2} \) |
| 43 | \( 1 - 6.92iT - 43T^{2} \) |
| 47 | \( 1 + 11.2iT - 47T^{2} \) |
| 53 | \( 1 - 5T + 53T^{2} \) |
| 59 | \( 1 - 10.5T + 59T^{2} \) |
| 61 | \( 1 - 3.46iT - 61T^{2} \) |
| 67 | \( 1 + 14.2iT - 67T^{2} \) |
| 71 | \( 1 + 6.92iT - 71T^{2} \) |
| 73 | \( 1 + 3.50T + 73T^{2} \) |
| 79 | \( 1 - 11.4T + 79T^{2} \) |
| 83 | \( 1 + 4.06iT - 83T^{2} \) |
| 89 | \( 1 - 4.91T + 89T^{2} \) |
| 97 | \( 1 + 11.9T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.702881455043905710998214375353, −8.696138738126471981763551176073, −7.45593520885631134650098463247, −6.93597899890110376021167987307, −6.50971342328689611885364553824, −5.32535991713365173393032853798, −4.86807202450722538489141807633, −3.30252083323582653005041356019, −2.41731649365692021992534308305, −1.46847700278065354273376826997,
0.889456567586859239066329556391, 2.53070511784759051123165775547, 3.72101810907084682765045100331, 4.33287211366824884852007995244, 5.52846468618743469210348480892, 5.74205107800904924058822871127, 6.57419845143869294830609390380, 8.072845364967814310477369188107, 8.722848823390086007579413327085, 9.523680395606912064660109802285