Properties

Label 1470.2.d.f
Level $1470$
Weight $2$
Character orbit 1470.d
Analytic conductor $11.738$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1470,2,Mod(1469,1470)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1470, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1470.1469");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7380090971\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.3317760000.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 7x^{4} - 36x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + (\beta_{5} + \beta_{2}) q^{3} + q^{4} + ( - \beta_{6} - \beta_{2}) q^{5} + (\beta_{5} + \beta_{2}) q^{6} + q^{8} + ( - \beta_{7} - 2) q^{9} + ( - \beta_{6} - \beta_{2}) q^{10} + ( - \beta_{7} + \beta_{4}) q^{11}+ \cdots + (2 \beta_{7} - \beta_{4} + 2 \beta_1 - 5) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{4} + 8 q^{8} - 16 q^{9} - 8 q^{15} + 8 q^{16} - 16 q^{18} - 8 q^{23} - 8 q^{25} - 8 q^{30} + 8 q^{32} - 16 q^{36} + 16 q^{39} - 8 q^{46} - 8 q^{50} - 40 q^{51} + 40 q^{53} - 40 q^{57}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 4x^{6} + 7x^{4} - 36x^{2} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{7} + 28\nu^{5} - 49\nu^{3} + 180\nu ) / 189 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -4\nu^{7} + 7\nu^{5} + 35\nu^{3} + 81\nu ) / 189 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{6} + 4\nu^{4} + 2\nu^{2} + 18 ) / 9 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -2\nu^{7} - \nu^{5} - 5\nu^{3} + 63\nu ) / 27 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 16\nu^{7} - 28\nu^{5} + 49\nu^{3} - 324\nu ) / 189 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -8\nu^{6} + 14\nu^{4} - 56\nu^{2} + 225 ) / 63 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -\nu^{6} + 22 ) / 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + \beta_{4} + \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{7} - 2\beta_{6} + \beta_{3} + 2 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + 4\beta_{2} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -4\beta_{7} + \beta_{6} + 4\beta_{3} + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -5\beta_{5} - 7\beta_{4} + 7\beta_{2} + 5\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -7\beta_{7} + 22 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 29\beta_{5} + 8\beta_{4} + 8\beta_{2} + 29\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times\).

\(n\) \(491\) \(1081\) \(1177\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1469.1
1.01575 1.40294i
−1.72286 0.178197i
−1.72286 + 0.178197i
1.01575 + 1.40294i
1.72286 0.178197i
−1.01575 1.40294i
−1.01575 + 1.40294i
1.72286 + 0.178197i
1.00000 −0.707107 1.58114i 1.00000 1.41421 1.73205i −0.707107 1.58114i 0 1.00000 −2.00000 + 2.23607i 1.41421 1.73205i
1469.2 1.00000 −0.707107 1.58114i 1.00000 1.41421 + 1.73205i −0.707107 1.58114i 0 1.00000 −2.00000 + 2.23607i 1.41421 + 1.73205i
1469.3 1.00000 −0.707107 + 1.58114i 1.00000 1.41421 1.73205i −0.707107 + 1.58114i 0 1.00000 −2.00000 2.23607i 1.41421 1.73205i
1469.4 1.00000 −0.707107 + 1.58114i 1.00000 1.41421 + 1.73205i −0.707107 + 1.58114i 0 1.00000 −2.00000 2.23607i 1.41421 + 1.73205i
1469.5 1.00000 0.707107 1.58114i 1.00000 −1.41421 1.73205i 0.707107 1.58114i 0 1.00000 −2.00000 2.23607i −1.41421 1.73205i
1469.6 1.00000 0.707107 1.58114i 1.00000 −1.41421 + 1.73205i 0.707107 1.58114i 0 1.00000 −2.00000 2.23607i −1.41421 + 1.73205i
1469.7 1.00000 0.707107 + 1.58114i 1.00000 −1.41421 1.73205i 0.707107 + 1.58114i 0 1.00000 −2.00000 + 2.23607i −1.41421 1.73205i
1469.8 1.00000 0.707107 + 1.58114i 1.00000 −1.41421 + 1.73205i 0.707107 + 1.58114i 0 1.00000 −2.00000 + 2.23607i −1.41421 + 1.73205i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1469.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
15.d odd 2 1 inner
105.g even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1470.2.d.f 8
3.b odd 2 1 1470.2.d.e 8
5.b even 2 1 1470.2.d.e 8
7.b odd 2 1 inner 1470.2.d.f 8
7.c even 3 1 210.2.t.e 8
7.d odd 6 1 210.2.t.e 8
15.d odd 2 1 inner 1470.2.d.f 8
21.c even 2 1 1470.2.d.e 8
21.g even 6 1 210.2.t.f yes 8
21.h odd 6 1 210.2.t.f yes 8
35.c odd 2 1 1470.2.d.e 8
35.i odd 6 1 210.2.t.f yes 8
35.j even 6 1 210.2.t.f yes 8
35.k even 12 2 1050.2.s.i 16
35.l odd 12 2 1050.2.s.i 16
105.g even 2 1 inner 1470.2.d.f 8
105.o odd 6 1 210.2.t.e 8
105.p even 6 1 210.2.t.e 8
105.w odd 12 2 1050.2.s.i 16
105.x even 12 2 1050.2.s.i 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.t.e 8 7.c even 3 1
210.2.t.e 8 7.d odd 6 1
210.2.t.e 8 105.o odd 6 1
210.2.t.e 8 105.p even 6 1
210.2.t.f yes 8 21.g even 6 1
210.2.t.f yes 8 21.h odd 6 1
210.2.t.f yes 8 35.i odd 6 1
210.2.t.f yes 8 35.j even 6 1
1050.2.s.i 16 35.k even 12 2
1050.2.s.i 16 35.l odd 12 2
1050.2.s.i 16 105.w odd 12 2
1050.2.s.i 16 105.x even 12 2
1470.2.d.e 8 3.b odd 2 1
1470.2.d.e 8 5.b even 2 1
1470.2.d.e 8 21.c even 2 1
1470.2.d.e 8 35.c odd 2 1
1470.2.d.f 8 1.a even 1 1 trivial
1470.2.d.f 8 7.b odd 2 1 inner
1470.2.d.f 8 15.d odd 2 1 inner
1470.2.d.f 8 105.g even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1470, [\chi])\):

\( T_{11}^{4} + 22T_{11}^{2} + 1 \) Copy content Toggle raw display
\( T_{13}^{4} - 46T_{13}^{2} + 49 \) Copy content Toggle raw display
\( T_{23}^{2} + 2T_{23} - 29 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} + 4 T^{2} + 9)^{2} \) Copy content Toggle raw display
$5$ \( (T^{4} + 2 T^{2} + 25)^{2} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( (T^{4} + 22 T^{2} + 1)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} - 46 T^{2} + 49)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 10)^{4} \) Copy content Toggle raw display
$19$ \( (T^{4} + 26 T^{2} + 49)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 2 T - 29)^{4} \) Copy content Toggle raw display
$29$ \( (T^{4} + 52 T^{2} + 196)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 44 T^{2} + 4)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 58 T^{2} + 361)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} - 46 T^{2} + 49)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 52 T^{2} + 196)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 186 T^{2} + 7569)^{2} \) Copy content Toggle raw display
$53$ \( (T - 5)^{8} \) Copy content Toggle raw display
$59$ \( (T^{4} - 136 T^{2} + 2704)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 12)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} + 232 T^{2} + 5776)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 52 T^{2} + 196)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} - 156 T^{2} + 1764)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 12 T + 6)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} + 296 T^{2} + 4624)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} - 136 T^{2} + 2704)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} - 156 T^{2} + 1764)^{2} \) Copy content Toggle raw display
show more
show less