Properties

Label 1470.2
Level 1470
Weight 2
Dimension 12416
Nonzero newspaces 24
Sturm bound 225792
Trace bound 5

Downloads

Learn more

Defining parameters

Level: N N = 1470=23572 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2}
Weight: k k = 2 2
Nonzero newspaces: 24 24
Sturm bound: 225792225792
Trace bound: 55

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(1470))M_{2}(\Gamma_1(1470)).

Total New Old
Modular forms 58368 12416 45952
Cusp forms 54529 12416 42113
Eisenstein series 3839 0 3839

Trace form

12416q10q316q428q526q632q732q920q1080q112q1248q13+10q1524q17+56q1848q19+4q20+20q21+8q22+40q99+O(q100) 12416 q - 10 q^{3} - 16 q^{4} - 28 q^{5} - 26 q^{6} - 32 q^{7} - 32 q^{9} - 20 q^{10} - 80 q^{11} - 2 q^{12} - 48 q^{13} + 10 q^{15} - 24 q^{17} + 56 q^{18} - 48 q^{19} + 4 q^{20} + 20 q^{21} + 8 q^{22}+ \cdots - 40 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(1470))S_{2}^{\mathrm{new}}(\Gamma_1(1470))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
1470.2.a χ1470(1,)\chi_{1470}(1, \cdot) 1470.2.a.a 1 1
1470.2.a.b 1
1470.2.a.c 1
1470.2.a.d 1
1470.2.a.e 1
1470.2.a.f 1
1470.2.a.g 1
1470.2.a.h 1
1470.2.a.i 1
1470.2.a.j 1
1470.2.a.k 1
1470.2.a.l 1
1470.2.a.m 1
1470.2.a.n 1
1470.2.a.o 1
1470.2.a.p 1
1470.2.a.q 1
1470.2.a.r 1
1470.2.a.s 2
1470.2.a.t 2
1470.2.a.u 2
1470.2.a.v 2
1470.2.b χ1470(881,)\chi_{1470}(881, \cdot) 1470.2.b.a 12 1
1470.2.b.b 12
1470.2.b.c 16
1470.2.b.d 16
1470.2.d χ1470(1469,)\chi_{1470}(1469, \cdot) 1470.2.d.a 4 1
1470.2.d.b 4
1470.2.d.c 4
1470.2.d.d 4
1470.2.d.e 8
1470.2.d.f 8
1470.2.d.g 24
1470.2.d.h 24
1470.2.g χ1470(589,)\chi_{1470}(589, \cdot) 1470.2.g.a 2 1
1470.2.g.b 2
1470.2.g.c 2
1470.2.g.d 2
1470.2.g.e 2
1470.2.g.f 2
1470.2.g.g 2
1470.2.g.h 6
1470.2.g.i 6
1470.2.g.j 8
1470.2.g.k 8
1470.2.i χ1470(361,)\chi_{1470}(361, \cdot) 1470.2.i.a 2 2
1470.2.i.b 2
1470.2.i.c 2
1470.2.i.d 2
1470.2.i.e 2
1470.2.i.f 2
1470.2.i.g 2
1470.2.i.h 2
1470.2.i.i 2
1470.2.i.j 2
1470.2.i.k 2
1470.2.i.l 2
1470.2.i.m 2
1470.2.i.n 2
1470.2.i.o 2
1470.2.i.p 2
1470.2.i.q 2
1470.2.i.r 2
1470.2.i.s 2
1470.2.i.t 2
1470.2.i.u 4
1470.2.i.v 4
1470.2.i.w 4
1470.2.i.x 4
1470.2.j χ1470(197,)\chi_{1470}(197, \cdot) n/a 164 2
1470.2.m χ1470(97,)\chi_{1470}(97, \cdot) 1470.2.m.a 8 2
1470.2.m.b 8
1470.2.m.c 16
1470.2.m.d 16
1470.2.m.e 16
1470.2.m.f 16
1470.2.n χ1470(79,)\chi_{1470}(79, \cdot) 1470.2.n.a 4 2
1470.2.n.b 4
1470.2.n.c 4
1470.2.n.d 4
1470.2.n.e 4
1470.2.n.f 4
1470.2.n.g 4
1470.2.n.h 4
1470.2.n.i 4
1470.2.n.j 12
1470.2.n.k 16
1470.2.n.l 16
1470.2.r χ1470(521,)\chi_{1470}(521, \cdot) n/a 104 2
1470.2.t χ1470(509,)\chi_{1470}(509, \cdot) n/a 160 2
1470.2.u χ1470(211,)\chi_{1470}(211, \cdot) n/a 240 6
1470.2.v χ1470(313,)\chi_{1470}(313, \cdot) n/a 160 4
1470.2.y χ1470(263,)\chi_{1470}(263, \cdot) n/a 320 4
1470.2.bb χ1470(169,)\chi_{1470}(169, \cdot) n/a 336 6
1470.2.bc χ1470(209,)\chi_{1470}(209, \cdot) n/a 672 6
1470.2.be χ1470(41,)\chi_{1470}(41, \cdot) n/a 432 6
1470.2.bg χ1470(121,)\chi_{1470}(121, \cdot) n/a 432 12
1470.2.bi χ1470(13,)\chi_{1470}(13, \cdot) n/a 672 12
1470.2.bj χ1470(113,)\chi_{1470}(113, \cdot) n/a 1344 12
1470.2.bm χ1470(59,)\chi_{1470}(59, \cdot) n/a 1344 12
1470.2.bo χ1470(101,)\chi_{1470}(101, \cdot) n/a 912 12
1470.2.bq χ1470(109,)\chi_{1470}(109, \cdot) n/a 672 12
1470.2.bt χ1470(23,)\chi_{1470}(23, \cdot) n/a 2688 24
1470.2.bu χ1470(73,)\chi_{1470}(73, \cdot) n/a 1344 24

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(1470))S_{2}^{\mathrm{old}}(\Gamma_1(1470)) into lower level spaces

S2old(Γ1(1470)) S_{2}^{\mathrm{old}}(\Gamma_1(1470)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))24^{\oplus 24}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))12^{\oplus 12}\oplusS2new(Γ1(3))S_{2}^{\mathrm{new}}(\Gamma_1(3))12^{\oplus 12}\oplusS2new(Γ1(5))S_{2}^{\mathrm{new}}(\Gamma_1(5))12^{\oplus 12}\oplusS2new(Γ1(6))S_{2}^{\mathrm{new}}(\Gamma_1(6))6^{\oplus 6}\oplusS2new(Γ1(7))S_{2}^{\mathrm{new}}(\Gamma_1(7))16^{\oplus 16}\oplusS2new(Γ1(10))S_{2}^{\mathrm{new}}(\Gamma_1(10))6^{\oplus 6}\oplusS2new(Γ1(14))S_{2}^{\mathrm{new}}(\Gamma_1(14))8^{\oplus 8}\oplusS2new(Γ1(15))S_{2}^{\mathrm{new}}(\Gamma_1(15))6^{\oplus 6}\oplusS2new(Γ1(21))S_{2}^{\mathrm{new}}(\Gamma_1(21))8^{\oplus 8}\oplusS2new(Γ1(30))S_{2}^{\mathrm{new}}(\Gamma_1(30))3^{\oplus 3}\oplusS2new(Γ1(35))S_{2}^{\mathrm{new}}(\Gamma_1(35))8^{\oplus 8}\oplusS2new(Γ1(42))S_{2}^{\mathrm{new}}(\Gamma_1(42))4^{\oplus 4}\oplusS2new(Γ1(49))S_{2}^{\mathrm{new}}(\Gamma_1(49))8^{\oplus 8}\oplusS2new(Γ1(70))S_{2}^{\mathrm{new}}(\Gamma_1(70))4^{\oplus 4}\oplusS2new(Γ1(98))S_{2}^{\mathrm{new}}(\Gamma_1(98))4^{\oplus 4}\oplusS2new(Γ1(105))S_{2}^{\mathrm{new}}(\Gamma_1(105))4^{\oplus 4}\oplusS2new(Γ1(147))S_{2}^{\mathrm{new}}(\Gamma_1(147))4^{\oplus 4}\oplusS2new(Γ1(210))S_{2}^{\mathrm{new}}(\Gamma_1(210))2^{\oplus 2}\oplusS2new(Γ1(245))S_{2}^{\mathrm{new}}(\Gamma_1(245))4^{\oplus 4}\oplusS2new(Γ1(294))S_{2}^{\mathrm{new}}(\Gamma_1(294))2^{\oplus 2}\oplusS2new(Γ1(490))S_{2}^{\mathrm{new}}(\Gamma_1(490))2^{\oplus 2}\oplusS2new(Γ1(735))S_{2}^{\mathrm{new}}(\Gamma_1(735))2^{\oplus 2}