Properties

Label 2-1470-7.2-c1-0-3
Degree $2$
Conductor $1470$
Sign $-0.198 - 0.980i$
Analytic cond. $11.7380$
Root an. cond. $3.42607$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s + (−0.5 + 0.866i)5-s + 0.999·6-s + 0.999·8-s + (−0.499 + 0.866i)9-s + (−0.499 − 0.866i)10-s + (−1.70 − 2.95i)11-s + (−0.499 + 0.866i)12-s + 0.999·15-s + (−0.5 + 0.866i)16-s + (0.707 + 1.22i)17-s + (−0.499 − 0.866i)18-s + (−1.41 + 2.44i)19-s + 0.999·20-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (−0.288 − 0.499i)3-s + (−0.249 − 0.433i)4-s + (−0.223 + 0.387i)5-s + 0.408·6-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.158 − 0.273i)10-s + (−0.514 − 0.891i)11-s + (−0.144 + 0.249i)12-s + 0.258·15-s + (−0.125 + 0.216i)16-s + (0.171 + 0.297i)17-s + (−0.117 − 0.204i)18-s + (−0.324 + 0.561i)19-s + 0.223·20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.198 - 0.980i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.198 - 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1470\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2}\)
Sign: $-0.198 - 0.980i$
Analytic conductor: \(11.7380\)
Root analytic conductor: \(3.42607\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1470} (961, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1470,\ (\ :1/2),\ -0.198 - 0.980i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7698953506\)
\(L(\frac12)\) \(\approx\) \(0.7698953506\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 - 0.866i)T \)
3 \( 1 + (0.5 + 0.866i)T \)
5 \( 1 + (0.5 - 0.866i)T \)
7 \( 1 \)
good11 \( 1 + (1.70 + 2.95i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 + (-0.707 - 1.22i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (1.41 - 2.44i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-0.414 + 0.717i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + 0.242T + 29T^{2} \)
31 \( 1 + (-4.53 - 7.85i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (0.707 - 1.22i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + 3.17T + 41T^{2} \)
43 \( 1 - 7.41T + 43T^{2} \)
47 \( 1 + (2.53 - 4.39i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (6.65 + 11.5i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-7.24 - 12.5i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-0.171 + 0.297i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-5.94 - 10.3i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 - 5.17T + 71T^{2} \)
73 \( 1 + (-1.82 - 3.16i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (5.65 - 9.79i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + 10.8T + 83T^{2} \)
89 \( 1 + (5.24 - 9.08i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 - 3.17T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.754810330913411151507361382501, −8.495021314128241255974282419760, −8.246410669436256660356223918726, −7.25989299742626737596903775879, −6.55644702096843847254803467350, −5.82036260820054687766156706558, −5.00993183306606390268070222634, −3.75591419435204632760761275178, −2.59711669259207851235398988256, −1.11112538662217581010700687359, 0.41727357623473776281040838839, 1.99958523418173970202159386959, 3.10427964429370067315110536756, 4.27284539593529618821790422922, 4.81510848255930719762375182890, 5.83863340725434712325054509560, 7.01496126336090822623716916298, 7.82872520794894513050446717953, 8.627921649640137616815804712483, 9.552909842787325594749067748140

Graph of the $Z$-function along the critical line