L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s + (−0.5 + 0.866i)5-s + 0.999·6-s + 0.999·8-s + (−0.499 + 0.866i)9-s + (−0.499 − 0.866i)10-s + (−1.70 − 2.95i)11-s + (−0.499 + 0.866i)12-s + 0.999·15-s + (−0.5 + 0.866i)16-s + (0.707 + 1.22i)17-s + (−0.499 − 0.866i)18-s + (−1.41 + 2.44i)19-s + 0.999·20-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.288 − 0.499i)3-s + (−0.249 − 0.433i)4-s + (−0.223 + 0.387i)5-s + 0.408·6-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.158 − 0.273i)10-s + (−0.514 − 0.891i)11-s + (−0.144 + 0.249i)12-s + 0.258·15-s + (−0.125 + 0.216i)16-s + (0.171 + 0.297i)17-s + (−0.117 − 0.204i)18-s + (−0.324 + 0.561i)19-s + 0.223·20-s + ⋯ |
Λ(s)=(=(1470s/2ΓC(s)L(s)(−0.198−0.980i)Λ(2−s)
Λ(s)=(=(1470s/2ΓC(s+1/2)L(s)(−0.198−0.980i)Λ(1−s)
Degree: |
2 |
Conductor: |
1470
= 2⋅3⋅5⋅72
|
Sign: |
−0.198−0.980i
|
Analytic conductor: |
11.7380 |
Root analytic conductor: |
3.42607 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1470(961,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1470, ( :1/2), −0.198−0.980i)
|
Particular Values
L(1) |
≈ |
0.7698953506 |
L(21) |
≈ |
0.7698953506 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5−0.866i)T |
| 3 | 1+(0.5+0.866i)T |
| 5 | 1+(0.5−0.866i)T |
| 7 | 1 |
good | 11 | 1+(1.70+2.95i)T+(−5.5+9.52i)T2 |
| 13 | 1+13T2 |
| 17 | 1+(−0.707−1.22i)T+(−8.5+14.7i)T2 |
| 19 | 1+(1.41−2.44i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−0.414+0.717i)T+(−11.5−19.9i)T2 |
| 29 | 1+0.242T+29T2 |
| 31 | 1+(−4.53−7.85i)T+(−15.5+26.8i)T2 |
| 37 | 1+(0.707−1.22i)T+(−18.5−32.0i)T2 |
| 41 | 1+3.17T+41T2 |
| 43 | 1−7.41T+43T2 |
| 47 | 1+(2.53−4.39i)T+(−23.5−40.7i)T2 |
| 53 | 1+(6.65+11.5i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−7.24−12.5i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−0.171+0.297i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−5.94−10.3i)T+(−33.5+58.0i)T2 |
| 71 | 1−5.17T+71T2 |
| 73 | 1+(−1.82−3.16i)T+(−36.5+63.2i)T2 |
| 79 | 1+(5.65−9.79i)T+(−39.5−68.4i)T2 |
| 83 | 1+10.8T+83T2 |
| 89 | 1+(5.24−9.08i)T+(−44.5−77.0i)T2 |
| 97 | 1−3.17T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.754810330913411151507361382501, −8.495021314128241255974282419760, −8.246410669436256660356223918726, −7.25989299742626737596903775879, −6.55644702096843847254803467350, −5.82036260820054687766156706558, −5.00993183306606390268070222634, −3.75591419435204632760761275178, −2.59711669259207851235398988256, −1.11112538662217581010700687359,
0.41727357623473776281040838839, 1.99958523418173970202159386959, 3.10427964429370067315110536756, 4.27284539593529618821790422922, 4.81510848255930719762375182890, 5.83863340725434712325054509560, 7.01496126336090822623716916298, 7.82872520794894513050446717953, 8.627921649640137616815804712483, 9.552909842787325594749067748140