L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s + (−0.5 + 0.866i)5-s + 0.999·6-s + 0.999·8-s + (−0.499 + 0.866i)9-s + (−0.499 − 0.866i)10-s + (−1.70 − 2.95i)11-s + (−0.499 + 0.866i)12-s + 0.999·15-s + (−0.5 + 0.866i)16-s + (0.707 + 1.22i)17-s + (−0.499 − 0.866i)18-s + (−1.41 + 2.44i)19-s + 0.999·20-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.288 − 0.499i)3-s + (−0.249 − 0.433i)4-s + (−0.223 + 0.387i)5-s + 0.408·6-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.158 − 0.273i)10-s + (−0.514 − 0.891i)11-s + (−0.144 + 0.249i)12-s + 0.258·15-s + (−0.125 + 0.216i)16-s + (0.171 + 0.297i)17-s + (−0.117 − 0.204i)18-s + (−0.324 + 0.561i)19-s + 0.223·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.198 - 0.980i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.198 - 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7698953506\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7698953506\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + (1.70 + 2.95i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 13T^{2} \) |
| 17 | \( 1 + (-0.707 - 1.22i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.41 - 2.44i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.414 + 0.717i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 0.242T + 29T^{2} \) |
| 31 | \( 1 + (-4.53 - 7.85i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.707 - 1.22i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 3.17T + 41T^{2} \) |
| 43 | \( 1 - 7.41T + 43T^{2} \) |
| 47 | \( 1 + (2.53 - 4.39i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (6.65 + 11.5i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-7.24 - 12.5i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.171 + 0.297i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.94 - 10.3i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 5.17T + 71T^{2} \) |
| 73 | \( 1 + (-1.82 - 3.16i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (5.65 - 9.79i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 10.8T + 83T^{2} \) |
| 89 | \( 1 + (5.24 - 9.08i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 3.17T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.754810330913411151507361382501, −8.495021314128241255974282419760, −8.246410669436256660356223918726, −7.25989299742626737596903775879, −6.55644702096843847254803467350, −5.82036260820054687766156706558, −5.00993183306606390268070222634, −3.75591419435204632760761275178, −2.59711669259207851235398988256, −1.11112538662217581010700687359,
0.41727357623473776281040838839, 1.99958523418173970202159386959, 3.10427964429370067315110536756, 4.27284539593529618821790422922, 4.81510848255930719762375182890, 5.83863340725434712325054509560, 7.01496126336090822623716916298, 7.82872520794894513050446717953, 8.627921649640137616815804712483, 9.552909842787325594749067748140