Properties

Label 1470.2.i.u
Level 14701470
Weight 22
Character orbit 1470.i
Analytic conductor 11.73811.738
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1470,2,Mod(361,1470)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1470, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1470.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1470=23572 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1470.i (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 11.738009097111.7380090971
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(2,3)\Q(\sqrt{2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+2x2+4 x^{4} + 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β21)q2+β2q3+β2q4+(β21)q5+q6+q8+(β21)q9+β2q10+(β3+2β2β1)q11++(β3+2)q99+O(q100) q + ( - \beta_{2} - 1) q^{2} + \beta_{2} q^{3} + \beta_{2} q^{4} + ( - \beta_{2} - 1) q^{5} + q^{6} + q^{8} + ( - \beta_{2} - 1) q^{9} + \beta_{2} q^{10} + ( - \beta_{3} + 2 \beta_{2} - \beta_1) q^{11}+ \cdots + (\beta_{3} + 2) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q22q32q42q5+4q6+4q82q92q104q112q12+4q152q162q18+4q20+8q224q232q242q25+4q27++8q99+O(q100) 4 q - 2 q^{2} - 2 q^{3} - 2 q^{4} - 2 q^{5} + 4 q^{6} + 4 q^{8} - 2 q^{9} - 2 q^{10} - 4 q^{11} - 2 q^{12} + 4 q^{15} - 2 q^{16} - 2 q^{18} + 4 q^{20} + 8 q^{22} - 4 q^{23} - 2 q^{24} - 2 q^{25} + 4 q^{27}+ \cdots + 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+2x2+4 x^{4} + 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/2 ( \nu^{2} ) / 2 Copy content Toggle raw display
β3\beta_{3}== (ν3)/2 ( \nu^{3} ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 2β2 2\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 2β3 2\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1470Z)×\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times.

nn 491491 10811081 11771177
χ(n)\chi(n) 11 1β2-1 - \beta_{2} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
361.1
−0.707107 1.22474i
0.707107 + 1.22474i
−0.707107 + 1.22474i
0.707107 1.22474i
−0.500000 0.866025i −0.500000 + 0.866025i −0.500000 + 0.866025i −0.500000 0.866025i 1.00000 0 1.00000 −0.500000 0.866025i −0.500000 + 0.866025i
361.2 −0.500000 0.866025i −0.500000 + 0.866025i −0.500000 + 0.866025i −0.500000 0.866025i 1.00000 0 1.00000 −0.500000 0.866025i −0.500000 + 0.866025i
961.1 −0.500000 + 0.866025i −0.500000 0.866025i −0.500000 0.866025i −0.500000 + 0.866025i 1.00000 0 1.00000 −0.500000 + 0.866025i −0.500000 0.866025i
961.2 −0.500000 + 0.866025i −0.500000 0.866025i −0.500000 0.866025i −0.500000 + 0.866025i 1.00000 0 1.00000 −0.500000 + 0.866025i −0.500000 0.866025i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1470.2.i.u 4
7.b odd 2 1 1470.2.i.v 4
7.c even 3 1 1470.2.a.v yes 2
7.c even 3 1 inner 1470.2.i.u 4
7.d odd 6 1 1470.2.a.u 2
7.d odd 6 1 1470.2.i.v 4
21.g even 6 1 4410.2.a.br 2
21.h odd 6 1 4410.2.a.bn 2
35.i odd 6 1 7350.2.a.df 2
35.j even 6 1 7350.2.a.dd 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1470.2.a.u 2 7.d odd 6 1
1470.2.a.v yes 2 7.c even 3 1
1470.2.i.u 4 1.a even 1 1 trivial
1470.2.i.u 4 7.c even 3 1 inner
1470.2.i.v 4 7.b odd 2 1
1470.2.i.v 4 7.d odd 6 1
4410.2.a.bn 2 21.h odd 6 1
4410.2.a.br 2 21.g even 6 1
7350.2.a.dd 2 35.j even 6 1
7350.2.a.df 2 35.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1470,[χ])S_{2}^{\mathrm{new}}(1470, [\chi]):

T114+4T113+14T112+8T11+4 T_{11}^{4} + 4T_{11}^{3} + 14T_{11}^{2} + 8T_{11} + 4 Copy content Toggle raw display
T13 T_{13} Copy content Toggle raw display
T174+2T172+4 T_{17}^{4} + 2T_{17}^{2} + 4 Copy content Toggle raw display
T194+8T192+64 T_{19}^{4} + 8T_{19}^{2} + 64 Copy content Toggle raw display
T3144T313+62T312+184T31+2116 T_{31}^{4} - 4T_{31}^{3} + 62T_{31}^{2} + 184T_{31} + 2116 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
33 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
55 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4+4T3++4 T^{4} + 4 T^{3} + \cdots + 4 Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4+2T2+4 T^{4} + 2T^{2} + 4 Copy content Toggle raw display
1919 T4+8T2+64 T^{4} + 8T^{2} + 64 Copy content Toggle raw display
2323 T4+4T3++16 T^{4} + 4 T^{3} + \cdots + 16 Copy content Toggle raw display
2929 (T28T2)2 (T^{2} - 8 T - 2)^{2} Copy content Toggle raw display
3131 T44T3++2116 T^{4} - 4 T^{3} + \cdots + 2116 Copy content Toggle raw display
3737 T4+2T2+4 T^{4} + 2T^{2} + 4 Copy content Toggle raw display
4141 (T2+12T+28)2 (T^{2} + 12 T + 28)^{2} Copy content Toggle raw display
4343 (T212T+34)2 (T^{2} - 12 T + 34)^{2} Copy content Toggle raw display
4747 T44T3++2116 T^{4} - 4 T^{3} + \cdots + 2116 Copy content Toggle raw display
5353 T4+4T3++15376 T^{4} + 4 T^{3} + \cdots + 15376 Copy content Toggle raw display
5959 T412T3++1296 T^{4} - 12 T^{3} + \cdots + 1296 Copy content Toggle raw display
6161 T412T3++16 T^{4} - 12 T^{3} + \cdots + 16 Copy content Toggle raw display
6767 T44T3++8836 T^{4} - 4 T^{3} + \cdots + 8836 Copy content Toggle raw display
7171 (T216T+56)2 (T^{2} - 16 T + 56)^{2} Copy content Toggle raw display
7373 T4+4T3++784 T^{4} + 4 T^{3} + \cdots + 784 Copy content Toggle raw display
7979 T4+128T2+16384 T^{4} + 128 T^{2} + 16384 Copy content Toggle raw display
8383 (T2+16T+56)2 (T^{2} + 16 T + 56)^{2} Copy content Toggle raw display
8989 T4+4T3++4624 T^{4} + 4 T^{3} + \cdots + 4624 Copy content Toggle raw display
9797 (T212T+28)2 (T^{2} - 12 T + 28)^{2} Copy content Toggle raw display
show more
show less