L(s) = 1 | + (0.707 − 0.707i)2-s + (0.707 − 0.707i)3-s − 1.00i·4-s + (−0.569 + 2.16i)5-s − 1.00i·6-s + (−0.707 − 0.707i)8-s − 1.00i·9-s + (1.12 + 1.93i)10-s − 2.01·11-s + (−0.707 − 0.707i)12-s + (3.44 − 3.44i)13-s + (1.12 + 1.93i)15-s − 1.00·16-s + (3.40 + 3.40i)17-s + (−0.707 − 0.707i)18-s + 6.72·19-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s + (0.408 − 0.408i)3-s − 0.500i·4-s + (−0.254 + 0.966i)5-s − 0.408i·6-s + (−0.250 − 0.250i)8-s − 0.333i·9-s + (0.356 + 0.610i)10-s − 0.607·11-s + (−0.204 − 0.204i)12-s + (0.954 − 0.954i)13-s + (0.290 + 0.498i)15-s − 0.250·16-s + (0.824 + 0.824i)17-s + (−0.166 − 0.166i)18-s + 1.54·19-s + ⋯ |
Λ(s)=(=(1470s/2ΓC(s)L(s)(0.566+0.824i)Λ(2−s)
Λ(s)=(=(1470s/2ΓC(s+1/2)L(s)(0.566+0.824i)Λ(1−s)
Degree: |
2 |
Conductor: |
1470
= 2⋅3⋅5⋅72
|
Sign: |
0.566+0.824i
|
Analytic conductor: |
11.7380 |
Root analytic conductor: |
3.42607 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1470(1273,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1470, ( :1/2), 0.566+0.824i)
|
Particular Values
L(1) |
≈ |
2.560819979 |
L(21) |
≈ |
2.560819979 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707+0.707i)T |
| 3 | 1+(−0.707+0.707i)T |
| 5 | 1+(0.569−2.16i)T |
| 7 | 1 |
good | 11 | 1+2.01T+11T2 |
| 13 | 1+(−3.44+3.44i)T−13iT2 |
| 17 | 1+(−3.40−3.40i)T+17iT2 |
| 19 | 1−6.72T+19T2 |
| 23 | 1+(−4.65−4.65i)T+23iT2 |
| 29 | 1+1.60iT−29T2 |
| 31 | 1+6.25iT−31T2 |
| 37 | 1+(−3.63+3.63i)T−37iT2 |
| 41 | 1+4.94iT−41T2 |
| 43 | 1+(4.68+4.68i)T+43iT2 |
| 47 | 1+(1.07+1.07i)T+47iT2 |
| 53 | 1+(−1.42−1.42i)T+53iT2 |
| 59 | 1−12.8T+59T2 |
| 61 | 1−9.00iT−61T2 |
| 67 | 1+(1.19−1.19i)T−67iT2 |
| 71 | 1+3.49T+71T2 |
| 73 | 1+(−5.97+5.97i)T−73iT2 |
| 79 | 1−13.9iT−79T2 |
| 83 | 1+(8.59−8.59i)T−83iT2 |
| 89 | 1−2.40T+89T2 |
| 97 | 1+(−13.1−13.1i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.637941583523398149233672165985, −8.448126967310616644609545433165, −7.67970823009817018051282933701, −7.08734424030142232994662221191, −5.86748239533610004411432674689, −5.44811850078426686570098063400, −3.80856244597964739009220702146, −3.32227081024154629523415582018, −2.43705960127092727274448564975, −1.04310209863073920489897138161,
1.21595988038675845777326487127, 2.91136328930635370463895934832, 3.69924421119195664785603844940, 4.91394682550245085418666556702, 5.06509935523403313776685365120, 6.31189675464645731316448288335, 7.30514602714017926112875974396, 8.051611305300310347214899715820, 8.775926910776084425487752076013, 9.382664515039381557342395399866