L(s) = 1 | + (0.707 − 0.707i)2-s + (0.707 − 0.707i)3-s − 1.00i·4-s + (−0.569 + 2.16i)5-s − 1.00i·6-s + (−0.707 − 0.707i)8-s − 1.00i·9-s + (1.12 + 1.93i)10-s − 2.01·11-s + (−0.707 − 0.707i)12-s + (3.44 − 3.44i)13-s + (1.12 + 1.93i)15-s − 1.00·16-s + (3.40 + 3.40i)17-s + (−0.707 − 0.707i)18-s + 6.72·19-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s + (0.408 − 0.408i)3-s − 0.500i·4-s + (−0.254 + 0.966i)5-s − 0.408i·6-s + (−0.250 − 0.250i)8-s − 0.333i·9-s + (0.356 + 0.610i)10-s − 0.607·11-s + (−0.204 − 0.204i)12-s + (0.954 − 0.954i)13-s + (0.290 + 0.498i)15-s − 0.250·16-s + (0.824 + 0.824i)17-s + (−0.166 − 0.166i)18-s + 1.54·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.566 + 0.824i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.566 + 0.824i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.560819979\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.560819979\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 + (0.569 - 2.16i)T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + 2.01T + 11T^{2} \) |
| 13 | \( 1 + (-3.44 + 3.44i)T - 13iT^{2} \) |
| 17 | \( 1 + (-3.40 - 3.40i)T + 17iT^{2} \) |
| 19 | \( 1 - 6.72T + 19T^{2} \) |
| 23 | \( 1 + (-4.65 - 4.65i)T + 23iT^{2} \) |
| 29 | \( 1 + 1.60iT - 29T^{2} \) |
| 31 | \( 1 + 6.25iT - 31T^{2} \) |
| 37 | \( 1 + (-3.63 + 3.63i)T - 37iT^{2} \) |
| 41 | \( 1 + 4.94iT - 41T^{2} \) |
| 43 | \( 1 + (4.68 + 4.68i)T + 43iT^{2} \) |
| 47 | \( 1 + (1.07 + 1.07i)T + 47iT^{2} \) |
| 53 | \( 1 + (-1.42 - 1.42i)T + 53iT^{2} \) |
| 59 | \( 1 - 12.8T + 59T^{2} \) |
| 61 | \( 1 - 9.00iT - 61T^{2} \) |
| 67 | \( 1 + (1.19 - 1.19i)T - 67iT^{2} \) |
| 71 | \( 1 + 3.49T + 71T^{2} \) |
| 73 | \( 1 + (-5.97 + 5.97i)T - 73iT^{2} \) |
| 79 | \( 1 - 13.9iT - 79T^{2} \) |
| 83 | \( 1 + (8.59 - 8.59i)T - 83iT^{2} \) |
| 89 | \( 1 - 2.40T + 89T^{2} \) |
| 97 | \( 1 + (-13.1 - 13.1i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.637941583523398149233672165985, −8.448126967310616644609545433165, −7.67970823009817018051282933701, −7.08734424030142232994662221191, −5.86748239533610004411432674689, −5.44811850078426686570098063400, −3.80856244597964739009220702146, −3.32227081024154629523415582018, −2.43705960127092727274448564975, −1.04310209863073920489897138161,
1.21595988038675845777326487127, 2.91136328930635370463895934832, 3.69924421119195664785603844940, 4.91394682550245085418666556702, 5.06509935523403313776685365120, 6.31189675464645731316448288335, 7.30514602714017926112875974396, 8.051611305300310347214899715820, 8.775926910776084425487752076013, 9.382664515039381557342395399866