Properties

Label 1470.2.m.c
Level 14701470
Weight 22
Character orbit 1470.m
Analytic conductor 11.73811.738
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1470,2,Mod(97,1470)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1470, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1470.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 1470=23572 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1470.m (of order 44, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,-8,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 11.738009097111.7380090971
Analytic rank: 00
Dimension: 1616
Relative dimension: 88 over Q(i)\Q(i)
Coefficient field: Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x1632x13+2x12+352x10288x9+2x81440x7+8800x6++390625 x^{16} - 32 x^{13} + 2 x^{12} + 352 x^{10} - 288 x^{9} + 2 x^{8} - 1440 x^{7} + 8800 x^{6} + \cdots + 390625 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ6q2β6q3β5q4+β3q5β5q6+β10q8β5q9β1q10+(β15β11+β2)q11++(β10β9+β1)q99+O(q100) q - \beta_{6} q^{2} - \beta_{6} q^{3} - \beta_{5} q^{4} + \beta_{3} q^{5} - \beta_{5} q^{6} + \beta_{10} q^{8} - \beta_{5} q^{9} - \beta_1 q^{10} + ( - \beta_{15} - \beta_{11} + \cdots - \beta_{2}) q^{11}+ \cdots + ( - \beta_{10} - \beta_{9} + \cdots - \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q8q58q1316q16+8q17+48q198q228q2316q24+8q258q3316q36+8q37+8q3816q47+8q52+8q5316q54+8q57++64q97+O(q100) 16 q - 8 q^{5} - 8 q^{13} - 16 q^{16} + 8 q^{17} + 48 q^{19} - 8 q^{22} - 8 q^{23} - 16 q^{24} + 8 q^{25} - 8 q^{33} - 16 q^{36} + 8 q^{37} + 8 q^{38} - 16 q^{47} + 8 q^{52} + 8 q^{53} - 16 q^{54} + 8 q^{57}+ \cdots + 64 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x1632x13+2x12+352x10288x9+2x81440x7+8800x6++390625 x^{16} - 32 x^{13} + 2 x^{12} + 352 x^{10} - 288 x^{9} + 2 x^{8} - 1440 x^{7} + 8800 x^{6} + \cdots + 390625 : Copy content Toggle raw display

β1\beta_{1}== (23ν15+151945ν14513400ν1330736ν123356569ν11++17286250000)/263500000 ( 23 \nu^{15} + 151945 \nu^{14} - 513400 \nu^{13} - 30736 \nu^{12} - 3356569 \nu^{11} + \cdots + 17286250000 ) / 263500000 Copy content Toggle raw display
β2\beta_{2}== (12176ν15711160ν14+2464225ν13+334507ν12+13822768ν11+88433203125)/1317500000 ( - 12176 \nu^{15} - 711160 \nu^{14} + 2464225 \nu^{13} + 334507 \nu^{12} + 13822768 \nu^{11} + \cdots - 88433203125 ) / 1317500000 Copy content Toggle raw display
β3\beta_{3}== (7153ν15+234160ν14230600ν13+200771ν124866801ν11++7283671875)/263500000 ( - 7153 \nu^{15} + 234160 \nu^{14} - 230600 \nu^{13} + 200771 \nu^{12} - 4866801 \nu^{11} + \cdots + 7283671875 ) / 263500000 Copy content Toggle raw display
β4\beta_{4}== (52781ν15277595ν14+417475ν13+1210867ν12+5695603ν11+6183828125)/1317500000 ( - 52781 \nu^{15} - 277595 \nu^{14} + 417475 \nu^{13} + 1210867 \nu^{12} + 5695603 \nu^{11} + \cdots - 6183828125 ) / 1317500000 Copy content Toggle raw display
β5\beta_{5}== (10532ν1594195ν14+91100ν13196524ν12+2002804ν11+3498281250)/164687500 ( 10532 \nu^{15} - 94195 \nu^{14} + 91100 \nu^{13} - 196524 \nu^{12} + 2002804 \nu^{11} + \cdots - 3498281250 ) / 164687500 Copy content Toggle raw display
β6\beta_{6}== (5499ν1536198ν14+69810ν13110818ν12+799959ν11+2325781250)/65875000 ( 5499 \nu^{15} - 36198 \nu^{14} + 69810 \nu^{13} - 110818 \nu^{12} + 799959 \nu^{11} + \cdots - 2325781250 ) / 65875000 Copy content Toggle raw display
β7\beta_{7}== (124784ν15+289765ν14+543850ν13+2971213ν126082048ν11+16529921875)/1317500000 ( - 124784 \nu^{15} + 289765 \nu^{14} + 543850 \nu^{13} + 2971213 \nu^{12} - 6082048 \nu^{11} + \cdots - 16529921875 ) / 1317500000 Copy content Toggle raw display
β8\beta_{8}== (128033ν1535880ν14+411075ν132683056ν12+1413601ν11+10391250000)/1317500000 ( 128033 \nu^{15} - 35880 \nu^{14} + 411075 \nu^{13} - 2683056 \nu^{12} + 1413601 \nu^{11} + \cdots - 10391250000 ) / 1317500000 Copy content Toggle raw display
β9\beta_{9}== (221264ν15+115ν14+759725ν13+4513448ν12596208ν11+29524375000)/1317500000 ( - 221264 \nu^{15} + 115 \nu^{14} + 759725 \nu^{13} + 4513448 \nu^{12} - 596208 \nu^{11} + \cdots - 29524375000 ) / 1317500000 Copy content Toggle raw display
β10\beta_{10}== (72414ν15+116510ν14145225ν13+1495498ν122394398ν11++4653906250)/329375000 ( - 72414 \nu^{15} + 116510 \nu^{14} - 145225 \nu^{13} + 1495498 \nu^{12} - 2394398 \nu^{11} + \cdots + 4653906250 ) / 329375000 Copy content Toggle raw display
β11\beta_{11}== (2029ν15230ν14+12455ν13+40928ν12+1427ν11+448000000)/8500000 ( - 2029 \nu^{15} - 230 \nu^{14} + 12455 \nu^{13} + 40928 \nu^{12} + 1427 \nu^{11} + \cdots - 448000000 ) / 8500000 Copy content Toggle raw display
β12\beta_{12}== (374136ν15+550015ν142860075ν137558352ν1210487208ν11++107188750000)/1317500000 ( 374136 \nu^{15} + 550015 \nu^{14} - 2860075 \nu^{13} - 7558352 \nu^{12} - 10487208 \nu^{11} + \cdots + 107188750000 ) / 1317500000 Copy content Toggle raw display
β13\beta_{13}== (372809ν15+616665ν14+2116200ν13+7167888ν1213513273ν11+73231250000)/1317500000 ( - 372809 \nu^{15} + 616665 \nu^{14} + 2116200 \nu^{13} + 7167888 \nu^{12} - 13513273 \nu^{11} + \cdots - 73231250000 ) / 1317500000 Copy content Toggle raw display
β14\beta_{14}== (377912ν151106320ν14+575ν138294559ν12+23323064ν11+4410859375)/1317500000 ( 377912 \nu^{15} - 1106320 \nu^{14} + 575 \nu^{13} - 8294559 \nu^{12} + 23323064 \nu^{11} + \cdots - 4410859375 ) / 1317500000 Copy content Toggle raw display
β15\beta_{15}== (95903ν15+201256ν1410640ν13+2025921ν124520623ν11++559140625)/263500000 ( - 95903 \nu^{15} + 201256 \nu^{14} - 10640 \nu^{13} + 2025921 \nu^{12} - 4520623 \nu^{11} + \cdots + 559140625 ) / 263500000 Copy content Toggle raw display
ν\nu== (β11+2β9+β8)/2 ( -\beta_{11} + 2\beta_{9} + \beta_{8} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== β132β112β8β1 \beta_{13} - 2\beta_{11} - 2\beta_{8} - \beta_1 Copy content Toggle raw display
ν3\nu^{3}== (2β152β143β11+3β8+2β78β46β3+8)/2 ( 2\beta_{15} - 2\beta_{14} - 3\beta_{11} + 3\beta_{8} + 2\beta_{7} - 8\beta_{4} - 6\beta_{3} + 8 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== β14+β128β11+8β10+7β9+8β84β7β5+7β21 -\beta_{14} + \beta_{12} - 8\beta_{11} + 8\beta_{10} + 7\beta_{9} + 8\beta_{8} - 4\beta_{7} - \beta_{5} + 7\beta_{2} - 1 Copy content Toggle raw display
ν5\nu^{5}== (2β152β1322β1241β112β931β8+22β1)/2 ( - 2 \beta_{15} - 2 \beta_{13} - 22 \beta_{12} - 41 \beta_{11} - 2 \beta_{9} - 31 \beta_{8} + \cdots - 22 \beta_1 ) / 2 Copy content Toggle raw display
ν6\nu^{6}== 25β1515β14β13+2β11β10+2β8+20β7++40 - 25 \beta_{15} - 15 \beta_{14} - \beta_{13} + 2 \beta_{11} - \beta_{10} + 2 \beta_{8} + 20 \beta_{7} + \cdots + 40 Copy content Toggle raw display
ν7\nu^{7}== (2β15+130β14+2β13+38β1275β11+160β10++280)/2 ( - 2 \beta_{15} + 130 \beta_{14} + 2 \beta_{13} + 38 \beta_{12} - 75 \beta_{11} + 160 \beta_{10} + \cdots + 280 ) / 2 Copy content Toggle raw display
ν8\nu^{8}== 23β15+β1415β13+15β1280β1172β10+121β9++1 - 23 \beta_{15} + \beta_{14} - 15 \beta_{13} + 15 \beta_{12} - 80 \beta_{11} - 72 \beta_{10} + 121 \beta_{9} + \cdots + 1 Copy content Toggle raw display
ν9\nu^{9}== (510β15386β14+386β13+54β12279β1164β10++824)/2 ( - 510 \beta_{15} - 386 \beta_{14} + 386 \beta_{13} + 54 \beta_{12} - 279 \beta_{11} - 64 \beta_{10} + \cdots + 824 ) / 2 Copy content Toggle raw display
ν10\nu^{10}== 281β15+399β14+32β13+281β12686β11+696β10+696 281 \beta_{15} + 399 \beta_{14} + 32 \beta_{13} + 281 \beta_{12} - 686 \beta_{11} + 696 \beta_{10} + \cdots - 696 Copy content Toggle raw display
ν11\nu^{11}== (768β15768β14130β13+954β122725β11+3680β10+1088)/2 ( - 768 \beta_{15} - 768 \beta_{14} - 130 \beta_{13} + 954 \beta_{12} - 2725 \beta_{11} + 3680 \beta_{10} + \cdots - 1088 ) / 2 Copy content Toggle raw display
ν12\nu^{12}== 2537β152336β141905β132336β12456β11544β10++4239 - 2537 \beta_{15} - 2336 \beta_{14} - 1905 \beta_{13} - 2336 \beta_{12} - 456 \beta_{11} - 544 \beta_{10} + \cdots + 4239 Copy content Toggle raw display
ν13\nu^{13}== (12288β15+5378β14+7424β121727β11+10816β10+19992)/2 ( - 12288 \beta_{15} + 5378 \beta_{14} + 7424 \beta_{12} - 1727 \beta_{11} + 10816 \beta_{10} + \cdots - 19992 ) / 2 Copy content Toggle raw display
ν14\nu^{14}== 6432β15+14112β14+736β13+5879β12242β11+19849β10++32672 - 6432 \beta_{15} + 14112 \beta_{14} + 736 \beta_{13} + 5879 \beta_{12} - 242 \beta_{11} + 19849 \beta_{10} + \cdots + 32672 Copy content Toggle raw display
ν15\nu^{15}== (51456β1552480β1451456β13+31744β12+76979β11++88640)/2 ( - 51456 \beta_{15} - 52480 \beta_{14} - 51456 \beta_{13} + 31744 \beta_{12} + 76979 \beta_{11} + \cdots + 88640 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1470Z)×\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times.

nn 491491 10811081 11771177
χ(n)\chi(n) 11 1-1 β5-\beta_{5}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
97.1
2.23272 + 0.122339i
−1.22045 1.87363i
−0.410538 + 2.19806i
−2.01595 + 0.967451i
−1.07534 + 1.96052i
−1.12594 1.93191i
2.21573 + 0.300921i
1.39977 1.74375i
2.23272 0.122339i
−1.22045 + 1.87363i
−0.410538 2.19806i
−2.01595 0.967451i
−1.07534 1.96052i
−1.12594 + 1.93191i
2.21573 0.300921i
1.39977 + 1.74375i
−0.707107 0.707107i −0.707107 0.707107i 1.00000i −2.10958 + 0.741398i 1.00000i 0 0.707107 0.707107i 1.00000i 2.01595 + 0.967451i
97.2 −0.707107 0.707107i −0.707107 0.707107i 1.00000i −1.84456 1.26397i 1.00000i 0 0.707107 0.707107i 1.00000i 0.410538 + 2.19806i
97.3 −0.707107 0.707107i −0.707107 0.707107i 1.00000i 0.461873 + 2.18785i 1.00000i 0 0.707107 0.707107i 1.00000i 1.22045 1.87363i
97.4 −0.707107 0.707107i −0.707107 0.707107i 1.00000i 1.49226 1.66528i 1.00000i 0 0.707107 0.707107i 1.00000i −2.23272 + 0.122339i
97.5 0.707107 + 0.707107i 0.707107 + 0.707107i 1.00000i −2.22280 0.243230i 1.00000i 0 −0.707107 + 0.707107i 1.00000i −1.39977 1.74375i
97.6 0.707107 + 0.707107i 0.707107 + 0.707107i 1.00000i −1.35397 + 1.77954i 1.00000i 0 −0.707107 + 0.707107i 1.00000i −2.21573 + 0.300921i
97.7 0.707107 + 0.707107i 0.707107 + 0.707107i 1.00000i −0.569907 2.16222i 1.00000i 0 −0.707107 + 0.707107i 1.00000i 1.12594 1.93191i
97.8 0.707107 + 0.707107i 0.707107 + 0.707107i 1.00000i 2.14668 + 0.625913i 1.00000i 0 −0.707107 + 0.707107i 1.00000i 1.07534 + 1.96052i
1273.1 −0.707107 + 0.707107i −0.707107 + 0.707107i 1.00000i −2.10958 0.741398i 1.00000i 0 0.707107 + 0.707107i 1.00000i 2.01595 0.967451i
1273.2 −0.707107 + 0.707107i −0.707107 + 0.707107i 1.00000i −1.84456 + 1.26397i 1.00000i 0 0.707107 + 0.707107i 1.00000i 0.410538 2.19806i
1273.3 −0.707107 + 0.707107i −0.707107 + 0.707107i 1.00000i 0.461873 2.18785i 1.00000i 0 0.707107 + 0.707107i 1.00000i 1.22045 + 1.87363i
1273.4 −0.707107 + 0.707107i −0.707107 + 0.707107i 1.00000i 1.49226 + 1.66528i 1.00000i 0 0.707107 + 0.707107i 1.00000i −2.23272 0.122339i
1273.5 0.707107 0.707107i 0.707107 0.707107i 1.00000i −2.22280 + 0.243230i 1.00000i 0 −0.707107 0.707107i 1.00000i −1.39977 + 1.74375i
1273.6 0.707107 0.707107i 0.707107 0.707107i 1.00000i −1.35397 1.77954i 1.00000i 0 −0.707107 0.707107i 1.00000i −2.21573 0.300921i
1273.7 0.707107 0.707107i 0.707107 0.707107i 1.00000i −0.569907 + 2.16222i 1.00000i 0 −0.707107 0.707107i 1.00000i 1.12594 + 1.93191i
1273.8 0.707107 0.707107i 0.707107 0.707107i 1.00000i 2.14668 0.625913i 1.00000i 0 −0.707107 0.707107i 1.00000i 1.07534 1.96052i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 97.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
35.f even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1470.2.m.c 16
5.c odd 4 1 1470.2.m.f yes 16
7.b odd 2 1 1470.2.m.f yes 16
35.f even 4 1 inner 1470.2.m.c 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1470.2.m.c 16 1.a even 1 1 trivial
1470.2.m.c 16 35.f even 4 1 inner
1470.2.m.f yes 16 5.c odd 4 1
1470.2.m.f yes 16 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1470,[χ])S_{2}^{\mathrm{new}}(1470, [\chi]):

T11840T116+8T115+382T114160T1131088T112+512T11+512 T_{11}^{8} - 40T_{11}^{6} + 8T_{11}^{5} + 382T_{11}^{4} - 160T_{11}^{3} - 1088T_{11}^{2} + 512T_{11} + 512 Copy content Toggle raw display
T1316+8T1315+32T1314+16T1313+740T1312+5632T1311++18496 T_{13}^{16} + 8 T_{13}^{15} + 32 T_{13}^{14} + 16 T_{13}^{13} + 740 T_{13}^{12} + 5632 T_{13}^{11} + \cdots + 18496 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4+1)4 (T^{4} + 1)^{4} Copy content Toggle raw display
33 (T4+1)4 (T^{4} + 1)^{4} Copy content Toggle raw display
55 T16+8T15++390625 T^{16} + 8 T^{15} + \cdots + 390625 Copy content Toggle raw display
77 T16 T^{16} Copy content Toggle raw display
1111 (T840T6++512)2 (T^{8} - 40 T^{6} + \cdots + 512)^{2} Copy content Toggle raw display
1313 T16+8T15++18496 T^{16} + 8 T^{15} + \cdots + 18496 Copy content Toggle raw display
1717 T168T15++1336336 T^{16} - 8 T^{15} + \cdots + 1336336 Copy content Toggle raw display
1919 (T824T7++31744)2 (T^{8} - 24 T^{7} + \cdots + 31744)^{2} Copy content Toggle raw display
2323 T16+8T15++4194304 T^{16} + 8 T^{15} + \cdots + 4194304 Copy content Toggle raw display
2929 T16+112T14++64 T^{16} + 112 T^{14} + \cdots + 64 Copy content Toggle raw display
3131 T16++303038464 T^{16} + \cdots + 303038464 Copy content Toggle raw display
3737 T16++1224191770624 T^{16} + \cdots + 1224191770624 Copy content Toggle raw display
4141 T16++14484603904 T^{16} + \cdots + 14484603904 Copy content Toggle raw display
4343 T16++3347316736 T^{16} + \cdots + 3347316736 Copy content Toggle raw display
4747 T16++1212153856 T^{16} + \cdots + 1212153856 Copy content Toggle raw display
5353 T16++1176027464704 T^{16} + \cdots + 1176027464704 Copy content Toggle raw display
5959 (T8+24T7++15023104)2 (T^{8} + 24 T^{7} + \cdots + 15023104)^{2} Copy content Toggle raw display
6161 T16++98867482624 T^{16} + \cdots + 98867482624 Copy content Toggle raw display
6767 T16++4228120576 T^{16} + \cdots + 4228120576 Copy content Toggle raw display
7171 (T8228T6++591872)2 (T^{8} - 228 T^{6} + \cdots + 591872)^{2} Copy content Toggle raw display
7373 T16++36991502500096 T^{16} + \cdots + 36991502500096 Copy content Toggle raw display
7979 T16++148243480576 T^{16} + \cdots + 148243480576 Copy content Toggle raw display
8383 T16++1401249857536 T^{16} + \cdots + 1401249857536 Copy content Toggle raw display
8989 (T832T7++15376)2 (T^{8} - 32 T^{7} + \cdots + 15376)^{2} Copy content Toggle raw display
9797 T16++244234884096256 T^{16} + \cdots + 244234884096256 Copy content Toggle raw display
show more
show less