gp: [N,k,chi] = [1470,2,Mod(97,1470)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1470, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 1, 2]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1470.97");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [16,0,0,0,-8,0,0,0,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 15 1,\beta_1,\ldots,\beta_{15} 1 , β 1 , … , β 1 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 16 − 32 x 13 + 2 x 12 + 352 x 10 − 288 x 9 + 2 x 8 − 1440 x 7 + 8800 x 6 + ⋯ + 390625 x^{16} - 32 x^{13} + 2 x^{12} + 352 x^{10} - 288 x^{9} + 2 x^{8} - 1440 x^{7} + 8800 x^{6} + \cdots + 390625 x 1 6 − 3 2 x 1 3 + 2 x 1 2 + 3 5 2 x 1 0 − 2 8 8 x 9 + 2 x 8 − 1 4 4 0 x 7 + 8 8 0 0 x 6 + ⋯ + 3 9 0 6 2 5
x^16 - 32*x^13 + 2*x^12 + 352*x^10 - 288*x^9 + 2*x^8 - 1440*x^7 + 8800*x^6 + 1250*x^4 - 100000*x^3 + 390625
:
β 1 \beta_{1} β 1 = = =
( 23 ν 15 + 151945 ν 14 − 513400 ν 13 − 30736 ν 12 − 3356569 ν 11 + ⋯ + 17286250000 ) / 263500000 ( 23 \nu^{15} + 151945 \nu^{14} - 513400 \nu^{13} - 30736 \nu^{12} - 3356569 \nu^{11} + \cdots + 17286250000 ) / 263500000 ( 2 3 ν 1 5 + 1 5 1 9 4 5 ν 1 4 − 5 1 3 4 0 0 ν 1 3 − 3 0 7 3 6 ν 1 2 − 3 3 5 6 5 6 9 ν 1 1 + ⋯ + 1 7 2 8 6 2 5 0 0 0 0 ) / 2 6 3 5 0 0 0 0 0
(23*v^15 + 151945*v^14 - 513400*v^13 - 30736*v^12 - 3356569*v^11 + 10867065*v^10 - 183704*v^9 + 19988016*v^8 - 99781289*v^7 + 133354345*v^6 - 9130200*v^5 + 988282000*v^4 - 2959145625*v^3 - 176434375*v^2 - 5904875000*v + 17286250000) / 263500000
β 2 \beta_{2} β 2 = = =
( − 12176 ν 15 − 711160 ν 14 + 2464225 ν 13 + 334507 ν 12 + 13822768 ν 11 + ⋯ − 88433203125 ) / 1317500000 ( - 12176 \nu^{15} - 711160 \nu^{14} + 2464225 \nu^{13} + 334507 \nu^{12} + 13822768 \nu^{11} + \cdots - 88433203125 ) / 1317500000 ( − 1 2 1 7 6 ν 1 5 − 7 1 1 1 6 0 ν 1 4 + 2 4 6 4 2 2 5 ν 1 3 + 3 3 4 5 0 7 ν 1 2 + 1 3 8 2 2 7 6 8 ν 1 1 + ⋯ − 8 8 4 3 3 2 0 3 1 2 5 ) / 1 3 1 7 5 0 0 0 0 0
(-12176*v^15 - 711160*v^14 + 2464225*v^13 + 334507*v^12 + 13822768*v^11 - 53602520*v^10 + 2515873*v^9 - 71108757*v^8 + 489526928*v^7 - 655014680*v^6 - 20484575*v^5 - 4050419125*v^4 + 14571370000*v^3 + 743925000*v^2 + 21019390625*v - 88433203125) / 1317500000
β 3 \beta_{3} β 3 = = =
( − 7153 ν 15 + 234160 ν 14 − 230600 ν 13 + 200771 ν 12 − 4866801 ν 11 + ⋯ + 7283671875 ) / 263500000 ( - 7153 \nu^{15} + 234160 \nu^{14} - 230600 \nu^{13} + 200771 \nu^{12} - 4866801 \nu^{11} + \cdots + 7283671875 ) / 263500000 ( − 7 1 5 3 ν 1 5 + 2 3 4 1 6 0 ν 1 4 − 2 3 0 6 0 0 ν 1 3 + 2 0 0 7 7 1 ν 1 2 − 4 8 6 6 8 0 1 ν 1 1 + ⋯ + 7 2 8 3 6 7 1 8 7 5 ) / 2 6 3 5 0 0 0 0 0
(-7153*v^15 + 234160*v^14 - 230600*v^13 + 200771*v^12 - 4866801*v^11 + 4897520*v^10 - 1954056*v^9 + 29256259*v^8 - 86582961*v^7 + 61131440*v^6 - 80373000*v^5 + 1382043875*v^4 - 1294480625*v^3 + 436350000*v^2 - 7983125000*v + 7283671875) / 263500000
β 4 \beta_{4} β 4 = = =
( − 52781 ν 15 − 277595 ν 14 + 417475 ν 13 + 1210867 ν 12 + 5695603 ν 11 + ⋯ − 6183828125 ) / 1317500000 ( - 52781 \nu^{15} - 277595 \nu^{14} + 417475 \nu^{13} + 1210867 \nu^{12} + 5695603 \nu^{11} + \cdots - 6183828125 ) / 1317500000 ( − 5 2 7 8 1 ν 1 5 − 2 7 7 5 9 5 ν 1 4 + 4 1 7 4 7 5 ν 1 3 + 1 2 1 0 8 6 7 ν 1 2 + 5 6 9 5 6 0 3 ν 1 1 + ⋯ − 6 1 8 3 8 2 8 1 2 5 ) / 1 3 1 7 5 0 0 0 0 0
(-52781*v^15 - 277595*v^14 + 417475*v^13 + 1210867*v^12 + 5695603*v^11 - 6617515*v^10 - 6615837*v^9 - 21020637*v^8 + 97051123*v^7 - 100536475*v^6 - 290692925*v^5 - 1656298125*v^4 + 1662561875*v^3 + 2208303125*v^2 + 9931171875*v - 6183828125) / 1317500000
β 5 \beta_{5} β 5 = = =
( 10532 ν 15 − 94195 ν 14 + 91100 ν 13 − 196524 ν 12 + 2002804 ν 11 + ⋯ − 3498281250 ) / 164687500 ( 10532 \nu^{15} - 94195 \nu^{14} + 91100 \nu^{13} - 196524 \nu^{12} + 2002804 \nu^{11} + \cdots - 3498281250 ) / 164687500 ( 1 0 5 3 2 ν 1 5 − 9 4 1 9 5 ν 1 4 + 9 1 1 0 0 ν 1 3 − 1 9 6 5 2 4 ν 1 2 + 2 0 0 2 8 0 4 ν 1 1 + ⋯ − 3 4 9 8 2 8 1 2 5 0 ) / 1 6 4 6 8 7 5 0 0
(10532*v^15 - 94195*v^14 + 91100*v^13 - 196524*v^12 + 2002804*v^11 - 2187965*v^10 + 1205964*v^9 - 14275106*v^8 + 36913924*v^7 - 25413395*v^6 + 64163100*v^5 - 565159000*v^4 + 555072500*v^3 - 278928125*v^2 + 3362187500*v - 3498281250) / 164687500
β 6 \beta_{6} β 6 = = =
( 5499 ν 15 − 36198 ν 14 + 69810 ν 13 − 110818 ν 12 + 799959 ν 11 + ⋯ − 2325781250 ) / 65875000 ( 5499 \nu^{15} - 36198 \nu^{14} + 69810 \nu^{13} - 110818 \nu^{12} + 799959 \nu^{11} + \cdots - 2325781250 ) / 65875000 ( 5 4 9 9 ν 1 5 − 3 6 1 9 8 ν 1 4 + 6 9 8 1 0 ν 1 3 − 1 1 0 8 1 8 ν 1 2 + 7 9 9 9 5 9 ν 1 1 + ⋯ − 2 3 2 5 7 8 1 2 5 0 ) / 6 5 8 7 5 0 0 0
(5499*v^15 - 36198*v^14 + 69810*v^13 - 110818*v^12 + 799959*v^11 - 1500066*v^10 + 759218*v^9 - 6093858*v^8 + 17642267*v^7 - 19619686*v^6 + 35441490*v^5 - 226977250*v^4 + 401156375*v^3 - 182746250*v^2 + 1367131250*v - 2325781250) / 65875000
β 7 \beta_{7} β 7 = = =
( − 124784 ν 15 + 289765 ν 14 + 543850 ν 13 + 2971213 ν 12 − 6082048 ν 11 + ⋯ − 16529921875 ) / 1317500000 ( - 124784 \nu^{15} + 289765 \nu^{14} + 543850 \nu^{13} + 2971213 \nu^{12} - 6082048 \nu^{11} + \cdots - 16529921875 ) / 1317500000 ( − 1 2 4 7 8 4 ν 1 5 + 2 8 9 7 6 5 ν 1 4 + 5 4 3 8 5 0 ν 1 3 + 2 9 7 1 2 1 3 ν 1 2 − 6 0 8 2 0 4 8 ν 1 1 + ⋯ − 1 6 5 2 9 9 2 1 8 7 5 ) / 1 3 1 7 5 0 0 0 0 0
(-124784*v^15 + 289765*v^14 + 543850*v^13 + 2971213*v^12 - 6082048*v^11 - 9726795*v^10 - 17542518*v^9 + 63233197*v^8 - 18736688*v^7 - 125413435*v^6 - 834999350*v^5 + 1529546125*v^4 + 2922380000*v^3 + 5544903125*v^2 - 8980093750*v - 16529921875) / 1317500000
β 8 \beta_{8} β 8 = = =
( 128033 ν 15 − 35880 ν 14 + 411075 ν 13 − 2683056 ν 12 + 1413601 ν 11 + ⋯ − 10391250000 ) / 1317500000 ( 128033 \nu^{15} - 35880 \nu^{14} + 411075 \nu^{13} - 2683056 \nu^{12} + 1413601 \nu^{11} + \cdots - 10391250000 ) / 1317500000 ( 1 2 8 0 3 3 ν 1 5 − 3 5 8 8 0 ν 1 4 + 4 1 1 0 7 5 ν 1 3 − 2 6 8 3 0 5 6 ν 1 2 + 1 4 1 3 6 0 1 ν 1 1 + ⋯ − 1 0 3 9 1 2 5 0 0 0 0 ) / 1 3 1 7 5 0 0 0 0 0
(128033*v^15 - 35880*v^14 + 411075*v^13 - 2683056*v^12 + 1413601*v^11 - 7551160*v^10 + 15219891*v^9 - 45725264*v^8 + 46597281*v^7 - 118375880*v^6 + 765575875*v^5 - 356214000*v^4 + 2128850625*v^3 - 4479975000*v^2 + 3063921875*v - 10391250000) / 1317500000
β 9 \beta_{9} β 9 = = =
( − 221264 ν 15 + 115 ν 14 + 759725 ν 13 + 4513448 ν 12 − 596208 ν 11 + ⋯ − 29524375000 ) / 1317500000 ( - 221264 \nu^{15} + 115 \nu^{14} + 759725 \nu^{13} + 4513448 \nu^{12} - 596208 \nu^{11} + \cdots - 29524375000 ) / 1317500000 ( − 2 2 1 2 6 4 ν 1 5 + 1 1 5 ν 1 4 + 7 5 9 7 2 5 ν 1 3 + 4 5 1 3 4 4 8 ν 1 2 − 5 9 6 2 0 8 ν 1 1 + ⋯ − 2 9 5 2 4 3 7 5 0 0 0 ) / 1 3 1 7 5 0 0 0 0 0
(-221264*v^15 + 115*v^14 + 759725*v^13 + 4513448*v^12 - 596208*v^11 - 16782845*v^10 - 23549603*v^9 + 62805512*v^8 + 99497552*v^7 - 180286285*v^6 - 1280351475*v^5 - 45651000*v^4 + 4664830000*v^3 + 7330671875*v^2 + 435328125*v - 29524375000) / 1317500000
β 10 \beta_{10} β 1 0 = = =
( − 72414 ν 15 + 116510 ν 14 − 145225 ν 13 + 1495498 ν 12 − 2394398 ν 11 + ⋯ + 4653906250 ) / 329375000 ( - 72414 \nu^{15} + 116510 \nu^{14} - 145225 \nu^{13} + 1495498 \nu^{12} - 2394398 \nu^{11} + \cdots + 4653906250 ) / 329375000 ( − 7 2 4 1 4 ν 1 5 + 1 1 6 5 1 0 ν 1 4 − 1 4 5 2 2 5 ν 1 3 + 1 4 9 5 4 9 8 ν 1 2 − 2 3 9 4 3 9 8 ν 1 1 + ⋯ + 4 6 5 3 9 0 6 2 5 0 ) / 3 2 9 3 7 5 0 0 0
(-72414*v^15 + 116510*v^14 - 145225*v^13 + 1495498*v^12 - 2394398*v^11 + 3173970*v^10 - 8656053*v^9 + 31497002*v^8 - 46480158*v^7 + 46384230*v^6 - 430608425*v^5 + 654882250*v^4 - 823538750*v^3 + 2448231250*v^2 - 3672203125*v + 4653906250) / 329375000
β 11 \beta_{11} β 1 1 = = =
( − 2029 ν 15 − 230 ν 14 + 12455 ν 13 + 40928 ν 12 + 1427 ν 11 + ⋯ − 448000000 ) / 8500000 ( - 2029 \nu^{15} - 230 \nu^{14} + 12455 \nu^{13} + 40928 \nu^{12} + 1427 \nu^{11} + \cdots - 448000000 ) / 8500000 ( − 2 0 2 9 ν 1 5 − 2 3 0 ν 1 4 + 1 2 4 5 5 ν 1 3 + 4 0 9 2 8 ν 1 2 + 1 4 2 7 ν 1 1 + ⋯ − 4 4 8 0 0 0 0 0 0 ) / 8 5 0 0 0 0 0
(-2029*v^15 - 230*v^14 + 12455*v^13 + 40928*v^12 + 1427*v^11 - 265270*v^10 - 205673*v^9 + 515392*v^8 + 1584467*v^7 - 3089990*v^6 - 11581465*v^5 - 2887200*v^4 + 73925875*v^3 + 65686250*v^2 + 8384375*v - 448000000) / 8500000
β 12 \beta_{12} β 1 2 = = =
( 374136 ν 15 + 550015 ν 14 − 2860075 ν 13 − 7558352 ν 12 − 10487208 ν 11 + ⋯ + 107188750000 ) / 1317500000 ( 374136 \nu^{15} + 550015 \nu^{14} - 2860075 \nu^{13} - 7558352 \nu^{12} - 10487208 \nu^{11} + \cdots + 107188750000 ) / 1317500000 ( 3 7 4 1 3 6 ν 1 5 + 5 5 0 0 1 5 ν 1 4 − 2 8 6 0 0 7 5 ν 1 3 − 7 5 5 8 3 5 2 ν 1 2 − 1 0 4 8 7 2 0 8 ν 1 1 + ⋯ + 1 0 7 1 8 8 7 5 0 0 0 0 ) / 1 3 1 7 5 0 0 0 0 0
(374136*v^15 + 550015*v^14 - 2860075*v^13 - 7558352*v^12 - 10487208*v^11 + 63213055*v^10 + 36024597*v^9 - 32747888*v^8 - 508697448*v^7 + 726564415*v^6 + 1997199925*v^5 + 3498498000*v^4 - 17288645000*v^3 - 12093690625*v^2 - 19156796875*v + 107188750000) / 1317500000
β 13 \beta_{13} β 1 3 = = =
( − 372809 ν 15 + 616665 ν 14 + 2116200 ν 13 + 7167888 ν 12 − 13513273 ν 11 + ⋯ − 73231250000 ) / 1317500000 ( - 372809 \nu^{15} + 616665 \nu^{14} + 2116200 \nu^{13} + 7167888 \nu^{12} - 13513273 \nu^{11} + \cdots - 73231250000 ) / 1317500000 ( − 3 7 2 8 0 9 ν 1 5 + 6 1 6 6 6 5 ν 1 4 + 2 1 1 6 2 0 0 ν 1 3 + 7 1 6 7 8 8 8 ν 1 2 − 1 3 5 1 3 2 7 3 ν 1 1 + ⋯ − 7 3 2 3 1 2 5 0 0 0 0 ) / 1 3 1 7 5 0 0 0 0 0
(-372809*v^15 + 616665*v^14 + 2116200*v^13 + 7167888*v^12 - 13513273*v^11 - 43000695*v^10 - 34237368*v^9 + 168261072*v^8 + 85472887*v^7 - 527876935*v^6 - 2104753400*v^5 + 3333950000*v^4 + 12378994375*v^3 + 11838115625*v^2 - 20797375000*v - 73231250000) / 1317500000
β 14 \beta_{14} β 1 4 = = =
( 377912 ν 15 − 1106320 ν 14 + 575 ν 13 − 8294559 ν 12 + 23323064 ν 11 + ⋯ − 4410859375 ) / 1317500000 ( 377912 \nu^{15} - 1106320 \nu^{14} + 575 \nu^{13} - 8294559 \nu^{12} + 23323064 \nu^{11} + \cdots - 4410859375 ) / 1317500000 ( 3 7 7 9 1 2 ν 1 5 − 1 1 0 6 3 2 0 ν 1 4 + 5 7 5 ν 1 3 − 8 2 9 4 5 5 9 ν 1 2 + 2 3 3 2 3 0 6 4 ν 1 1 + ⋯ − 4 4 1 0 8 5 9 3 7 5 ) / 1 3 1 7 5 0 0 0 0 0
(377912*v^15 - 1106320*v^14 + 575*v^13 - 8294559*v^12 + 23323064*v^11 - 2981040*v^10 + 49110799*v^9 - 226586671*v^8 + 314783384*v^7 - 46705520*v^6 + 2424194175*v^5 - 6401757375*v^4 + 244135000*v^3 - 14467050000*v^2 + 36653359375*v - 4410859375) / 1317500000
β 15 \beta_{15} β 1 5 = = =
( − 95903 ν 15 + 201256 ν 14 − 10640 ν 13 + 2025921 ν 12 − 4520623 ν 11 + ⋯ + 559140625 ) / 263500000 ( - 95903 \nu^{15} + 201256 \nu^{14} - 10640 \nu^{13} + 2025921 \nu^{12} - 4520623 \nu^{11} + \cdots + 559140625 ) / 263500000 ( − 9 5 9 0 3 ν 1 5 + 2 0 1 2 5 6 ν 1 4 − 1 0 6 4 0 ν 1 3 + 2 0 2 5 9 2 1 ν 1 2 − 4 5 2 0 6 2 3 ν 1 1 + ⋯ + 5 5 9 1 4 0 6 2 5 ) / 2 6 3 5 0 0 0 0 0
(-95903*v^15 + 201256*v^14 - 10640*v^13 + 2025921*v^12 - 4520623*v^11 + 677992*v^10 - 11953936*v^9 + 50671601*v^8 - 55705439*v^7 + 10534952*v^6 - 590045520*v^5 + 1207441825*v^4 - 26643375*v^3 + 3471705000*v^2 - 7407050000*v + 559140625) / 263500000
ν \nu ν = = =
( − β 11 + 2 β 9 + β 8 ) / 2 ( -\beta_{11} + 2\beta_{9} + \beta_{8} ) / 2 ( − β 1 1 + 2 β 9 + β 8 ) / 2
(-b11 + 2*b9 + b8) / 2
ν 2 \nu^{2} ν 2 = = =
β 13 − 2 β 11 − 2 β 8 − β 1 \beta_{13} - 2\beta_{11} - 2\beta_{8} - \beta_1 β 1 3 − 2 β 1 1 − 2 β 8 − β 1
b13 - 2*b11 - 2*b8 - b1
ν 3 \nu^{3} ν 3 = = =
( 2 β 15 − 2 β 14 − 3 β 11 + 3 β 8 + 2 β 7 − 8 β 4 − 6 β 3 + 8 ) / 2 ( 2\beta_{15} - 2\beta_{14} - 3\beta_{11} + 3\beta_{8} + 2\beta_{7} - 8\beta_{4} - 6\beta_{3} + 8 ) / 2 ( 2 β 1 5 − 2 β 1 4 − 3 β 1 1 + 3 β 8 + 2 β 7 − 8 β 4 − 6 β 3 + 8 ) / 2
(2*b15 - 2*b14 - 3*b11 + 3*b8 + 2*b7 - 8*b4 - 6*b3 + 8) / 2
ν 4 \nu^{4} ν 4 = = =
− β 14 + β 12 − 8 β 11 + 8 β 10 + 7 β 9 + 8 β 8 − 4 β 7 − β 5 + 7 β 2 − 1 -\beta_{14} + \beta_{12} - 8\beta_{11} + 8\beta_{10} + 7\beta_{9} + 8\beta_{8} - 4\beta_{7} - \beta_{5} + 7\beta_{2} - 1 − β 1 4 + β 1 2 − 8 β 1 1 + 8 β 1 0 + 7 β 9 + 8 β 8 − 4 β 7 − β 5 + 7 β 2 − 1
-b14 + b12 - 8*b11 + 8*b10 + 7*b9 + 8*b8 - 4*b7 - b5 + 7*b2 - 1
ν 5 \nu^{5} ν 5 = = =
( − 2 β 15 − 2 β 13 − 22 β 12 − 41 β 11 − 2 β 9 − 31 β 8 + ⋯ − 22 β 1 ) / 2 ( - 2 \beta_{15} - 2 \beta_{13} - 22 \beta_{12} - 41 \beta_{11} - 2 \beta_{9} - 31 \beta_{8} + \cdots - 22 \beta_1 ) / 2 ( − 2 β 1 5 − 2 β 1 3 − 2 2 β 1 2 − 4 1 β 1 1 − 2 β 9 − 3 1 β 8 + ⋯ − 2 2 β 1 ) / 2
(-2*b15 - 2*b13 - 22*b12 - 41*b11 - 2*b9 - 31*b8 + 10*b6 - 48*b5 - 2*b4 - 22*b1) / 2
ν 6 \nu^{6} ν 6 = = =
− 25 β 15 − 15 β 14 − β 13 + 2 β 11 − β 10 + 2 β 8 + 20 β 7 + ⋯ + 40 - 25 \beta_{15} - 15 \beta_{14} - \beta_{13} + 2 \beta_{11} - \beta_{10} + 2 \beta_{8} + 20 \beta_{7} + \cdots + 40 − 2 5 β 1 5 − 1 5 β 1 4 − β 1 3 + 2 β 1 1 − β 1 0 + 2 β 8 + 2 0 β 7 + ⋯ + 4 0
-25*b15 - 15*b14 - b13 + 2*b11 - b10 + 2*b8 + 20*b7 - 55*b6 - 20*b4 - 25*b3 + b2 - 15*b1 + 40
ν 7 \nu^{7} ν 7 = = =
( − 2 β 15 + 130 β 14 + 2 β 13 + 38 β 12 − 75 β 11 + 160 β 10 + ⋯ + 280 ) / 2 ( - 2 \beta_{15} + 130 \beta_{14} + 2 \beta_{13} + 38 \beta_{12} - 75 \beta_{11} + 160 \beta_{10} + \cdots + 280 ) / 2 ( − 2 β 1 5 + 1 3 0 β 1 4 + 2 β 1 3 + 3 8 β 1 2 − 7 5 β 1 1 + 1 6 0 β 1 0 + ⋯ + 2 8 0 ) / 2
(-2*b15 + 130*b14 + 2*b13 + 38*b12 - 75*b11 + 160*b10 + 130*b9 + 77*b8 + 120*b7 - 48*b5 + 8*b4 + 38*b3 + 90*b2 + 280) / 2
ν 8 \nu^{8} ν 8 = = =
− 23 β 15 + β 14 − 15 β 13 + 15 β 12 − 80 β 11 − 72 β 10 + 121 β 9 + ⋯ + 1 - 23 \beta_{15} + \beta_{14} - 15 \beta_{13} + 15 \beta_{12} - 80 \beta_{11} - 72 \beta_{10} + 121 \beta_{9} + \cdots + 1 − 2 3 β 1 5 + β 1 4 − 1 5 β 1 3 + 1 5 β 1 2 − 8 0 β 1 1 − 7 2 β 1 0 + 1 2 1 β 9 + ⋯ + 1
-23*b15 + b14 - 15*b13 + 15*b12 - 80*b11 - 72*b10 + 121*b9 - 260*b8 + 4*b7 + 95*b6 - 240*b5 - 28*b4 + b3 - 23*b2 - 121*b1 + 1
ν 9 \nu^{9} ν 9 = = =
( − 510 β 15 − 386 β 14 + 386 β 13 + 54 β 12 − 279 β 11 − 64 β 10 + ⋯ + 824 ) / 2 ( - 510 \beta_{15} - 386 \beta_{14} + 386 \beta_{13} + 54 \beta_{12} - 279 \beta_{11} - 64 \beta_{10} + \cdots + 824 ) / 2 ( − 5 1 0 β 1 5 − 3 8 6 β 1 4 + 3 8 6 β 1 3 + 5 4 β 1 2 − 2 7 9 β 1 1 − 6 4 β 1 0 + ⋯ + 8 2 4 ) / 2
(-510*b15 - 386*b14 + 386*b13 + 54*b12 - 279*b11 - 64*b10 - 545*b8 + 616*b7 + 150*b6 + 176*b5 - 360*b4 - 438*b3 + 54*b2 + 438*b1 + 824) / 2
ν 10 \nu^{10} ν 1 0 = = =
281 β 15 + 399 β 14 + 32 β 13 + 281 β 12 − 686 β 11 + 696 β 10 + ⋯ − 696 281 \beta_{15} + 399 \beta_{14} + 32 \beta_{13} + 281 \beta_{12} - 686 \beta_{11} + 696 \beta_{10} + \cdots - 696 2 8 1 β 1 5 + 3 9 9 β 1 4 + 3 2 β 1 3 + 2 8 1 β 1 2 − 6 8 6 β 1 1 + 6 9 6 β 1 0 + ⋯ − 6 9 6
281*b15 + 399*b14 + 32*b13 + 281*b12 - 686*b11 + 696*b10 + 631*b9 + 718*b8 + 876*b7 + 135*b6 - 416*b5 - 684*b4 - 631*b3 + 399*b2 + 32*b1 - 696
ν 11 \nu^{11} ν 1 1 = = =
( − 768 β 15 − 768 β 14 − 130 β 13 + 954 β 12 − 2725 β 11 + 3680 β 10 + ⋯ − 1088 ) / 2 ( - 768 \beta_{15} - 768 \beta_{14} - 130 \beta_{13} + 954 \beta_{12} - 2725 \beta_{11} + 3680 \beta_{10} + \cdots - 1088 ) / 2 ( − 7 6 8 β 1 5 − 7 6 8 β 1 4 − 1 3 0 β 1 3 + 9 5 4 β 1 2 − 2 7 2 5 β 1 1 + 3 6 8 0 β 1 0 + ⋯ − 1 0 8 8 ) / 2
(-768*b15 - 768*b14 - 130*b13 + 954*b12 - 2725*b11 + 3680*b10 - 130*b9 - 3715*b8 - 2042*b7 + 2810*b6 - 4944*b5 - 1088*b4 + 2630*b2 - 2630*b1 - 1088) / 2
ν 12 \nu^{12} ν 1 2 = = =
− 2537 β 15 − 2336 β 14 − 1905 β 13 − 2336 β 12 − 456 β 11 − 544 β 10 + ⋯ + 4239 - 2537 \beta_{15} - 2336 \beta_{14} - 1905 \beta_{13} - 2336 \beta_{12} - 456 \beta_{11} - 544 \beta_{10} + \cdots + 4239 − 2 5 3 7 β 1 5 − 2 3 3 6 β 1 4 − 1 9 0 5 β 1 3 − 2 3 3 6 β 1 2 − 4 5 6 β 1 1 − 5 4 4 β 1 0 + ⋯ + 4 2 3 9
-2537*b15 - 2336*b14 - 1905*b13 - 2336*b12 - 456*b11 - 544*b10 - 544*b9 - 1124*b8 + 4256*b7 + 2385*b6 - 4239*b5 - 2212*b4 - 1905*b3 + 544*b2 + 2537*b1 + 4239
ν 13 \nu^{13} ν 1 3 = = =
( − 12288 β 15 + 5378 β 14 + 7424 β 12 − 1727 β 11 + 10816 β 10 + ⋯ − 19992 ) / 2 ( - 12288 \beta_{15} + 5378 \beta_{14} + 7424 \beta_{12} - 1727 \beta_{11} + 10816 \beta_{10} + \cdots - 19992 ) / 2 ( − 1 2 2 8 8 β 1 5 + 5 3 7 8 β 1 4 + 7 4 2 4 β 1 2 − 1 7 2 7 β 1 1 + 1 0 8 1 6 β 1 0 + ⋯ − 1 9 9 9 2 ) / 2
(-12288*b15 + 5378*b14 + 7424*b12 - 1727*b11 + 10816*b10 + 12288*b9 + 7167*b8 + 19992*b7 - 23360*b6 - 12864*b5 + 6762*b4 - 8234*b3 + 8234*b2 - 7424*b1 - 19992) / 2
ν 14 \nu^{14} ν 1 4 = = =
− 6432 β 15 + 14112 β 14 + 736 β 13 + 5879 β 12 − 242 β 11 + 19849 β 10 + ⋯ + 32672 - 6432 \beta_{15} + 14112 \beta_{14} + 736 \beta_{13} + 5879 \beta_{12} - 242 \beta_{11} + 19849 \beta_{10} + \cdots + 32672 − 6 4 3 2 β 1 5 + 1 4 1 1 2 β 1 4 + 7 3 6 β 1 3 + 5 8 7 9 β 1 2 − 2 4 2 β 1 1 + 1 9 8 4 9 β 1 0 + ⋯ + 3 2 6 7 2
-6432*b15 + 14112*b14 + 736*b13 + 5879*b12 - 242*b11 + 19849*b10 - 5879*b9 - 29742*b8 + 16608*b7 + 18560*b6 - 26464*b5 - 6432*b4 + 6432*b3 + 736*b2 - 14112*b1 + 32672
ν 15 \nu^{15} ν 1 5 = = =
( − 51456 β 15 − 52480 β 14 − 51456 β 13 + 31744 β 12 + 76979 β 11 + ⋯ + 88640 ) / 2 ( - 51456 \beta_{15} - 52480 \beta_{14} - 51456 \beta_{13} + 31744 \beta_{12} + 76979 \beta_{11} + \cdots + 88640 ) / 2 ( − 5 1 4 5 6 β 1 5 − 5 2 4 8 0 β 1 4 − 5 1 4 5 6 β 1 3 + 3 1 7 4 4 β 1 2 + 7 6 9 7 9 β 1 1 + ⋯ + 8 8 6 4 0 ) / 2
(-51456*b15 - 52480*b14 - 51456*b13 + 31744*b12 + 76979*b11 - 64320*b10 + 52480*b9 - 69645*b8 + 116800*b7 + 58790*b6 - 39104*b5 - 58816*b4 - 31744*b3 + 50406*b1 + 88640) / 2
Character values
We give the values of χ \chi χ on generators for ( Z / 1470 Z ) × \left(\mathbb{Z}/1470\mathbb{Z}\right)^\times ( Z / 1 4 7 0 Z ) × .
n n n
491 491 4 9 1
1081 1081 1 0 8 1
1177 1177 1 1 7 7
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
− β 5 -\beta_{5} − β 5
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 1470 , [ χ ] ) S_{2}^{\mathrm{new}}(1470, [\chi]) S 2 n e w ( 1 4 7 0 , [ χ ] ) :
T 11 8 − 40 T 11 6 + 8 T 11 5 + 382 T 11 4 − 160 T 11 3 − 1088 T 11 2 + 512 T 11 + 512 T_{11}^{8} - 40T_{11}^{6} + 8T_{11}^{5} + 382T_{11}^{4} - 160T_{11}^{3} - 1088T_{11}^{2} + 512T_{11} + 512 T 1 1 8 − 4 0 T 1 1 6 + 8 T 1 1 5 + 3 8 2 T 1 1 4 − 1 6 0 T 1 1 3 − 1 0 8 8 T 1 1 2 + 5 1 2 T 1 1 + 5 1 2
T11^8 - 40*T11^6 + 8*T11^5 + 382*T11^4 - 160*T11^3 - 1088*T11^2 + 512*T11 + 512
T 13 16 + 8 T 13 15 + 32 T 13 14 + 16 T 13 13 + 740 T 13 12 + 5632 T 13 11 + ⋯ + 18496 T_{13}^{16} + 8 T_{13}^{15} + 32 T_{13}^{14} + 16 T_{13}^{13} + 740 T_{13}^{12} + 5632 T_{13}^{11} + \cdots + 18496 T 1 3 1 6 + 8 T 1 3 1 5 + 3 2 T 1 3 1 4 + 1 6 T 1 3 1 3 + 7 4 0 T 1 3 1 2 + 5 6 3 2 T 1 3 1 1 + ⋯ + 1 8 4 9 6
T13^16 + 8*T13^15 + 32*T13^14 + 16*T13^13 + 740*T13^12 + 5632*T13^11 + 21504*T13^10 + 12480*T13^9 + 107444*T13^8 + 648992*T13^7 + 1900160*T13^6 + 2597824*T13^5 + 1910048*T13^4 + 394624*T13^3 + 4608*T13^2 - 13056*T13 + 18496
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 4 + 1 ) 4 (T^{4} + 1)^{4} ( T 4 + 1 ) 4
(T^4 + 1)^4
3 3 3
( T 4 + 1 ) 4 (T^{4} + 1)^{4} ( T 4 + 1 ) 4
(T^4 + 1)^4
5 5 5
T 16 + 8 T 15 + ⋯ + 390625 T^{16} + 8 T^{15} + \cdots + 390625 T 1 6 + 8 T 1 5 + ⋯ + 3 9 0 6 2 5
T^16 + 8*T^15 + 28*T^14 + 56*T^13 + 70*T^12 + 56*T^11 + 28*T^10 + 8*T^9 + 2*T^8 + 40*T^7 + 700*T^6 + 7000*T^5 + 43750*T^4 + 175000*T^3 + 437500*T^2 + 625000*T + 390625
7 7 7
T 16 T^{16} T 1 6
T^16
11 11 1 1
( T 8 − 40 T 6 + ⋯ + 512 ) 2 (T^{8} - 40 T^{6} + \cdots + 512)^{2} ( T 8 − 4 0 T 6 + ⋯ + 5 1 2 ) 2
(T^8 - 40*T^6 + 8*T^5 + 382*T^4 - 160*T^3 - 1088*T^2 + 512*T + 512)^2
13 13 1 3
T 16 + 8 T 15 + ⋯ + 18496 T^{16} + 8 T^{15} + \cdots + 18496 T 1 6 + 8 T 1 5 + ⋯ + 1 8 4 9 6
T^16 + 8*T^15 + 32*T^14 + 16*T^13 + 740*T^12 + 5632*T^11 + 21504*T^10 + 12480*T^9 + 107444*T^8 + 648992*T^7 + 1900160*T^6 + 2597824*T^5 + 1910048*T^4 + 394624*T^3 + 4608*T^2 - 13056*T + 18496
17 17 1 7
T 16 − 8 T 15 + ⋯ + 1336336 T^{16} - 8 T^{15} + \cdots + 1336336 T 1 6 − 8 T 1 5 + ⋯ + 1 3 3 6 3 3 6
T^16 - 8*T^15 + 32*T^14 + 64*T^13 + 3152*T^12 - 26096*T^11 + 109952*T^10 + 242176*T^9 - 130504*T^8 - 598240*T^7 + 18393216*T^6 + 75580672*T^5 + 151093568*T^4 + 153372096*T^3 + 85229568*T^2 + 15092736*T + 1336336
19 19 1 9
( T 8 − 24 T 7 + ⋯ + 31744 ) 2 (T^{8} - 24 T^{7} + \cdots + 31744)^{2} ( T 8 − 2 4 T 7 + ⋯ + 3 1 7 4 4 ) 2
(T^8 - 24*T^7 + 180*T^6 - 144*T^5 - 3708*T^4 + 12352*T^3 + 5248*T^2 - 54272*T + 31744)^2
23 23 2 3
T 16 + 8 T 15 + ⋯ + 4194304 T^{16} + 8 T^{15} + \cdots + 4194304 T 1 6 + 8 T 1 5 + ⋯ + 4 1 9 4 3 0 4
T^16 + 8*T^15 + 32*T^14 - 48*T^13 + 2184*T^12 + 14752*T^11 + 49280*T^10 + 26176*T^9 - 8176*T^8 + 119808*T^7 + 1146880*T^6 + 49152*T^5 - 475136*T^4 - 1572864*T^3 + 8388608*T^2 - 8388608*T + 4194304
29 29 2 9
T 16 + 112 T 14 + ⋯ + 64 T^{16} + 112 T^{14} + \cdots + 64 T 1 6 + 1 1 2 T 1 4 + ⋯ + 6 4
T^16 + 112*T^14 + 4204*T^12 + 63568*T^10 + 351348*T^8 + 779424*T^6 + 620448*T^4 + 77184*T^2 + 64
31 31 3 1
T 16 + ⋯ + 303038464 T^{16} + \cdots + 303038464 T 1 6 + ⋯ + 3 0 3 0 3 8 4 6 4
T^16 + 320*T^14 + 39804*T^12 + 2468928*T^10 + 80125444*T^8 + 1273638912*T^6 + 7772106752*T^4 + 9677307904*T^2 + 303038464
37 37 3 7
T 16 + ⋯ + 1224191770624 T^{16} + \cdots + 1224191770624 T 1 6 + ⋯ + 1 2 2 4 1 9 1 7 7 0 6 2 4
T^16 - 8*T^15 + 32*T^14 - 272*T^13 + 17924*T^12 - 162000*T^11 + 759424*T^10 - 2436896*T^9 + 40893956*T^8 - 362205056*T^7 + 1761953792*T^6 - 4308895744*T^5 + 14443317248*T^4 - 88779096064*T^3 + 429404979200*T^2 - 1025352663040*T + 1224191770624
41 41 4 1
T 16 + ⋯ + 14484603904 T^{16} + \cdots + 14484603904 T 1 6 + ⋯ + 1 4 4 8 4 6 0 3 9 0 4
T^16 + 344*T^14 + 44724*T^12 + 2790480*T^10 + 89708676*T^8 + 1468735296*T^6 + 10787820672*T^4 + 22834207744*T^2 + 14484603904
43 43 4 3
T 16 + ⋯ + 3347316736 T^{16} + \cdots + 3347316736 T 1 6 + ⋯ + 3 3 4 7 3 1 6 7 3 6
T^16 - 224*T^13 + 9164*T^12 - 14784*T^11 + 25088*T^10 - 911680*T^9 + 11314820*T^8 - 41145216*T^7 + 83593216*T^6 - 145625088*T^5 + 932091904*T^4 - 3299573760*T^3 + 6576668672*T^2 - 6635388928*T + 3347316736
47 47 4 7
T 16 + ⋯ + 1212153856 T^{16} + \cdots + 1212153856 T 1 6 + ⋯ + 1 2 1 2 1 5 3 8 5 6
T^16 + 16*T^15 + 128*T^14 + 96*T^13 + 26380*T^12 + 402592*T^11 + 3069440*T^10 + 4097984*T^9 + 179488004*T^8 + 2530418560*T^7 + 17973970944*T^6 + 40742932480*T^5 + 49173127168*T^4 + 21445607424*T^3 + 2283798528*T^2 - 2353004544*T + 1212153856
53 53 5 3
T 16 + ⋯ + 1176027464704 T^{16} + \cdots + 1176027464704 T 1 6 + ⋯ + 1 1 7 6 0 2 7 4 6 4 7 0 4
T^16 - 8*T^15 + 32*T^14 + 208*T^13 + 23960*T^12 - 178336*T^11 + 681600*T^10 + 4147648*T^9 + 176869584*T^8 - 1148941824*T^7 + 3965147136*T^6 + 20328189440*T^5 + 373704430336*T^4 - 1667752409088*T^3 + 3551688163328*T^2 - 2890288160768*T + 1176027464704
59 59 5 9
( T 8 + 24 T 7 + ⋯ + 15023104 ) 2 (T^{8} + 24 T^{7} + \cdots + 15023104)^{2} ( T 8 + 2 4 T 7 + ⋯ + 1 5 0 2 3 1 0 4 ) 2
(T^8 + 24*T^7 - 52*T^6 - 5440*T^5 - 37060*T^4 + 174912*T^3 + 2958208*T^2 + 11758592*T + 15023104)^2
61 61 6 1
T 16 + ⋯ + 98867482624 T^{16} + \cdots + 98867482624 T 1 6 + ⋯ + 9 8 8 6 7 4 8 2 6 2 4
T^16 + 648*T^14 + 160788*T^12 + 19485456*T^10 + 1183933316*T^8 + 31395442176*T^6 + 189494849280*T^4 + 266839572480*T^2 + 98867482624
67 67 6 7
T 16 + ⋯ + 4228120576 T^{16} + \cdots + 4228120576 T 1 6 + ⋯ + 4 2 2 8 1 2 0 5 7 6
T^16 + 48*T^15 + 1152*T^14 + 17248*T^13 + 222668*T^12 + 3494880*T^11 + 59987456*T^10 + 825235648*T^9 + 8252020868*T^8 + 58689541248*T^7 + 294240651264*T^6 + 1006404622336*T^5 + 2237420570624*T^4 + 2849732984832*T^3 + 1870827880448*T^2 + 125778264064*T + 4228120576
71 71 7 1
( T 8 − 228 T 6 + ⋯ + 591872 ) 2 (T^{8} - 228 T^{6} + \cdots + 591872)^{2} ( T 8 − 2 2 8 T 6 + ⋯ + 5 9 1 8 7 2 ) 2
(T^8 - 228*T^6 - 896*T^5 + 8004*T^4 + 28544*T^3 - 112384*T^2 - 208896*T + 591872)^2
73 73 7 3
T 16 + ⋯ + 36991502500096 T^{16} + \cdots + 36991502500096 T 1 6 + ⋯ + 3 6 9 9 1 5 0 2 5 0 0 0 9 6
T^16 + 16*T^15 + 128*T^14 + 416*T^13 + 24668*T^12 + 370112*T^11 + 2850816*T^10 + 11231360*T^9 + 123435140*T^8 + 1580872000*T^7 + 12334017024*T^6 + 48415579776*T^5 + 134410557248*T^4 + 615420529152*T^3 + 4808075692032*T^2 + 18860431807488*T + 36991502500096
79 79 7 9
T 16 + ⋯ + 148243480576 T^{16} + \cdots + 148243480576 T 1 6 + ⋯ + 1 4 8 2 4 3 4 8 0 5 7 6
T^16 + 720*T^14 + 193056*T^12 + 24132352*T^10 + 1442709760*T^8 + 37532991488*T^6 + 296029519872*T^4 + 739137028096*T^2 + 148243480576
83 83 8 3
T 16 + ⋯ + 1401249857536 T^{16} + \cdots + 1401249857536 T 1 6 + ⋯ + 1 4 0 1 2 4 9 8 5 7 5 3 6
T^16 + 640*T^13 + 45600*T^12 + 97280*T^11 + 204800*T^10 + 13629440*T^9 + 509747456*T^8 + 1911521280*T^7 + 4115660800*T^6 + 30152458240*T^5 + 540572778496*T^4 + 2513080156160*T^3 + 6060769280000*T^2 + 4121323110400*T + 1401249857536
89 89 8 9
( T 8 − 32 T 7 + ⋯ + 15376 ) 2 (T^{8} - 32 T^{7} + \cdots + 15376)^{2} ( T 8 − 3 2 T 7 + ⋯ + 1 5 3 7 6 ) 2
(T^8 - 32*T^7 + 52*T^6 + 5920*T^5 - 32566*T^4 - 173952*T^3 + 196112*T^2 + 781696*T + 15376)^2
97 97 9 7
T 16 + ⋯ + 244234884096256 T^{16} + \cdots + 244234884096256 T 1 6 + ⋯ + 2 4 4 2 3 4 8 8 4 0 9 6 2 5 6
T^16 - 64*T^15 + 2048*T^14 - 38880*T^13 + 480604*T^12 - 4021248*T^11 + 28910080*T^10 - 269183232*T^9 + 2926317188*T^8 - 22710734080*T^7 + 117151090688*T^6 - 512357261440*T^5 + 4080338085696*T^4 - 29994906685440*T^3 + 135545346394112*T^2 - 257312657933312*T + 244234884096256
show more
show less