L(s) = 1 | + (−0.707 + 0.707i)2-s + (−0.707 + 0.707i)3-s − 1.00i·4-s + (0.461 − 2.18i)5-s − 1.00i·6-s + (0.707 + 0.707i)8-s − 1.00i·9-s + (1.22 + 1.87i)10-s − 2.98·11-s + (0.707 + 0.707i)12-s + (−0.960 + 0.960i)13-s + (1.22 + 1.87i)15-s − 1.00·16-s + (−1.62 − 1.62i)17-s + (0.707 + 0.707i)18-s + 8.67·19-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (−0.408 + 0.408i)3-s − 0.500i·4-s + (0.206 − 0.978i)5-s − 0.408i·6-s + (0.250 + 0.250i)8-s − 0.333i·9-s + (0.385 + 0.592i)10-s − 0.899·11-s + (0.204 + 0.204i)12-s + (−0.266 + 0.266i)13-s + (0.315 + 0.483i)15-s − 0.250·16-s + (−0.394 − 0.394i)17-s + (0.166 + 0.166i)18-s + 1.98·19-s + ⋯ |
Λ(s)=(=(1470s/2ΓC(s)L(s)(−0.333+0.942i)Λ(2−s)
Λ(s)=(=(1470s/2ΓC(s+1/2)L(s)(−0.333+0.942i)Λ(1−s)
Degree: |
2 |
Conductor: |
1470
= 2⋅3⋅5⋅72
|
Sign: |
−0.333+0.942i
|
Analytic conductor: |
11.7380 |
Root analytic conductor: |
3.42607 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1470(1273,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1470, ( :1/2), −0.333+0.942i)
|
Particular Values
L(1) |
≈ |
0.4749893396 |
L(21) |
≈ |
0.4749893396 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 3 | 1+(0.707−0.707i)T |
| 5 | 1+(−0.461+2.18i)T |
| 7 | 1 |
good | 11 | 1+2.98T+11T2 |
| 13 | 1+(0.960−0.960i)T−13iT2 |
| 17 | 1+(1.62+1.62i)T+17iT2 |
| 19 | 1−8.67T+19T2 |
| 23 | 1+(−1.36−1.36i)T+23iT2 |
| 29 | 1+2.00iT−29T2 |
| 31 | 1+0.179iT−31T2 |
| 37 | 1+(4.86−4.86i)T−37iT2 |
| 41 | 1+5.14iT−41T2 |
| 43 | 1+(7.01+7.01i)T+43iT2 |
| 47 | 1+(−0.202−0.202i)T+47iT2 |
| 53 | 1+(7.01+7.01i)T+53iT2 |
| 59 | 1+7.09T+59T2 |
| 61 | 1+2.41iT−61T2 |
| 67 | 1+(6.29−6.29i)T−67iT2 |
| 71 | 1+9.08T+71T2 |
| 73 | 1+(8.78−8.78i)T−73iT2 |
| 79 | 1+16.2iT−79T2 |
| 83 | 1+(−8.11+8.11i)T−83iT2 |
| 89 | 1+12.3T+89T2 |
| 97 | 1+(−7.44−7.44i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.290043716010047046205633037558, −8.560063910631368598060637591167, −7.67246945486024083120526500143, −6.95703160331051175072458271695, −5.75812053830462583663203862397, −5.21066512370421166720321395060, −4.57291448363719071077750085292, −3.15782824628179088702868965640, −1.62334109794843661474721453982, −0.24092409628550973267663530484,
1.44891190248953267679651567613, 2.68370379698863319864645552367, 3.31960584419453372403274072222, 4.81014766791964966200606753208, 5.71400716031413787959689353109, 6.65409428101839260309547922167, 7.49242974771367992072408173405, 7.917641887110297045947388214100, 9.123515916078323181395069198016, 9.916205598794640671942418053740