Properties

Label 1470.2.m.c.1273.3
Level $1470$
Weight $2$
Character 1470.1273
Analytic conductor $11.738$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1470,2,Mod(97,1470)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1470, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1470.97");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1470.m (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7380090971\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 32 x^{13} + 2 x^{12} + 352 x^{10} - 288 x^{9} + 2 x^{8} - 1440 x^{7} + 8800 x^{6} + \cdots + 390625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1273.3
Root \(-0.410538 - 2.19806i\) of defining polynomial
Character \(\chi\) \(=\) 1470.1273
Dual form 1470.2.m.c.97.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(-0.707107 + 0.707107i) q^{3} -1.00000i q^{4} +(0.461873 - 2.18785i) q^{5} -1.00000i q^{6} +(0.707107 + 0.707107i) q^{8} -1.00000i q^{9} +(1.22045 + 1.87363i) q^{10} -2.98190 q^{11} +(0.707107 + 0.707107i) q^{12} +(-0.960607 + 0.960607i) q^{13} +(1.22045 + 1.87363i) q^{15} -1.00000 q^{16} +(-1.62757 - 1.62757i) q^{17} +(0.707107 + 0.707107i) q^{18} +8.67101 q^{19} +(-2.18785 - 0.461873i) q^{20} +(2.10852 - 2.10852i) q^{22} +(1.36811 + 1.36811i) q^{23} -1.00000 q^{24} +(-4.57335 - 2.02101i) q^{25} -1.35850i q^{26} +(0.707107 + 0.707107i) q^{27} -2.00735i q^{29} +(-2.18785 - 0.461873i) q^{30} -0.179275i q^{31} +(0.707107 - 0.707107i) q^{32} +(2.10852 - 2.10852i) q^{33} +2.30173 q^{34} -1.00000 q^{36} +(-4.86644 + 4.86644i) q^{37} +(-6.13133 + 6.13133i) q^{38} -1.35850i q^{39} +(1.87363 - 1.22045i) q^{40} -5.14811i q^{41} +(-7.01377 - 7.01377i) q^{43} +2.98190i q^{44} +(-2.18785 - 0.461873i) q^{45} -1.93480 q^{46} +(0.202085 + 0.202085i) q^{47} +(0.707107 - 0.707107i) q^{48} +(4.66292 - 1.80477i) q^{50} +2.30173 q^{51} +(0.960607 + 0.960607i) q^{52} +(-7.01726 - 7.01726i) q^{53} -1.00000 q^{54} +(-1.37726 + 6.52395i) q^{55} +(-6.13133 + 6.13133i) q^{57} +(1.41941 + 1.41941i) q^{58} -7.09038 q^{59} +(1.87363 - 1.22045i) q^{60} -2.41715i q^{61} +(0.126767 + 0.126767i) q^{62} +1.00000i q^{64} +(1.65798 + 2.54534i) q^{65} +2.98190i q^{66} +(-6.29036 + 6.29036i) q^{67} +(-1.62757 + 1.62757i) q^{68} -1.93480 q^{69} -9.08488 q^{71} +(0.707107 - 0.707107i) q^{72} +(-8.78132 + 8.78132i) q^{73} -6.88219i q^{74} +(4.66292 - 1.80477i) q^{75} -8.67101i q^{76} +(0.960607 + 0.960607i) q^{78} -16.2755i q^{79} +(-0.461873 + 2.18785i) q^{80} -1.00000 q^{81} +(3.64026 + 3.64026i) q^{82} +(8.11428 - 8.11428i) q^{83} +(-4.31259 + 2.80914i) q^{85} +9.91897 q^{86} +(1.41941 + 1.41941i) q^{87} +(-2.10852 - 2.10852i) q^{88} -12.3037 q^{89} +(1.87363 - 1.22045i) q^{90} +(1.36811 - 1.36811i) q^{92} +(0.126767 + 0.126767i) q^{93} -0.285791 q^{94} +(4.00490 - 18.9709i) q^{95} +1.00000i q^{96} +(7.44633 + 7.44633i) q^{97} +2.98190i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{5} - 8 q^{13} - 16 q^{16} + 8 q^{17} + 48 q^{19} - 8 q^{22} - 8 q^{23} - 16 q^{24} + 8 q^{25} - 8 q^{33} - 16 q^{36} + 8 q^{37} + 8 q^{38} - 16 q^{47} + 8 q^{52} + 8 q^{53} - 16 q^{54} + 8 q^{57}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times\).

\(n\) \(491\) \(1081\) \(1177\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) 1.00000i 0.500000i
\(5\) 0.461873 2.18785i 0.206556 0.978435i
\(6\) 1.00000i 0.408248i
\(7\) 0 0
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 1.00000i 0.333333i
\(10\) 1.22045 + 1.87363i 0.385940 + 0.592495i
\(11\) −2.98190 −0.899077 −0.449539 0.893261i \(-0.648412\pi\)
−0.449539 + 0.893261i \(0.648412\pi\)
\(12\) 0.707107 + 0.707107i 0.204124 + 0.204124i
\(13\) −0.960607 + 0.960607i −0.266425 + 0.266425i −0.827658 0.561233i \(-0.810327\pi\)
0.561233 + 0.827658i \(0.310327\pi\)
\(14\) 0 0
\(15\) 1.22045 + 1.87363i 0.315118 + 0.483770i
\(16\) −1.00000 −0.250000
\(17\) −1.62757 1.62757i −0.394743 0.394743i 0.481631 0.876374i \(-0.340045\pi\)
−0.876374 + 0.481631i \(0.840045\pi\)
\(18\) 0.707107 + 0.707107i 0.166667 + 0.166667i
\(19\) 8.67101 1.98927 0.994634 0.103461i \(-0.0329916\pi\)
0.994634 + 0.103461i \(0.0329916\pi\)
\(20\) −2.18785 0.461873i −0.489217 0.103278i
\(21\) 0 0
\(22\) 2.10852 2.10852i 0.449539 0.449539i
\(23\) 1.36811 + 1.36811i 0.285270 + 0.285270i 0.835207 0.549936i \(-0.185348\pi\)
−0.549936 + 0.835207i \(0.685348\pi\)
\(24\) −1.00000 −0.204124
\(25\) −4.57335 2.02101i −0.914670 0.404203i
\(26\) 1.35850i 0.266425i
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) 2.00735i 0.372756i −0.982478 0.186378i \(-0.940325\pi\)
0.982478 0.186378i \(-0.0596749\pi\)
\(30\) −2.18785 0.461873i −0.399444 0.0843260i
\(31\) 0.179275i 0.0321988i −0.999870 0.0160994i \(-0.994875\pi\)
0.999870 0.0160994i \(-0.00512481\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 2.10852 2.10852i 0.367047 0.367047i
\(34\) 2.30173 0.394743
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) −4.86644 + 4.86644i −0.800039 + 0.800039i −0.983101 0.183063i \(-0.941399\pi\)
0.183063 + 0.983101i \(0.441399\pi\)
\(38\) −6.13133 + 6.13133i −0.994634 + 0.994634i
\(39\) 1.35850i 0.217535i
\(40\) 1.87363 1.22045i 0.296248 0.192970i
\(41\) 5.14811i 0.803999i −0.915640 0.402000i \(-0.868315\pi\)
0.915640 0.402000i \(-0.131685\pi\)
\(42\) 0 0
\(43\) −7.01377 7.01377i −1.06959 1.06959i −0.997390 0.0722000i \(-0.976998\pi\)
−0.0722000 0.997390i \(-0.523002\pi\)
\(44\) 2.98190i 0.449539i
\(45\) −2.18785 0.461873i −0.326145 0.0688519i
\(46\) −1.93480 −0.285270
\(47\) 0.202085 + 0.202085i 0.0294771 + 0.0294771i 0.721692 0.692215i \(-0.243365\pi\)
−0.692215 + 0.721692i \(0.743365\pi\)
\(48\) 0.707107 0.707107i 0.102062 0.102062i
\(49\) 0 0
\(50\) 4.66292 1.80477i 0.659436 0.255233i
\(51\) 2.30173 0.322306
\(52\) 0.960607 + 0.960607i 0.133212 + 0.133212i
\(53\) −7.01726 7.01726i −0.963895 0.963895i 0.0354757 0.999371i \(-0.488705\pi\)
−0.999371 + 0.0354757i \(0.988705\pi\)
\(54\) −1.00000 −0.136083
\(55\) −1.37726 + 6.52395i −0.185710 + 0.879689i
\(56\) 0 0
\(57\) −6.13133 + 6.13133i −0.812115 + 0.812115i
\(58\) 1.41941 + 1.41941i 0.186378 + 0.186378i
\(59\) −7.09038 −0.923088 −0.461544 0.887117i \(-0.652704\pi\)
−0.461544 + 0.887117i \(0.652704\pi\)
\(60\) 1.87363 1.22045i 0.241885 0.157559i
\(61\) 2.41715i 0.309484i −0.987955 0.154742i \(-0.950545\pi\)
0.987955 0.154742i \(-0.0494547\pi\)
\(62\) 0.126767 + 0.126767i 0.0160994 + 0.0160994i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 1.65798 + 2.54534i 0.205648 + 0.315711i
\(66\) 2.98190i 0.367047i
\(67\) −6.29036 + 6.29036i −0.768489 + 0.768489i −0.977841 0.209351i \(-0.932865\pi\)
0.209351 + 0.977841i \(0.432865\pi\)
\(68\) −1.62757 + 1.62757i −0.197371 + 0.197371i
\(69\) −1.93480 −0.232922
\(70\) 0 0
\(71\) −9.08488 −1.07818 −0.539088 0.842249i \(-0.681231\pi\)
−0.539088 + 0.842249i \(0.681231\pi\)
\(72\) 0.707107 0.707107i 0.0833333 0.0833333i
\(73\) −8.78132 + 8.78132i −1.02778 + 1.02778i −0.0281728 + 0.999603i \(0.508969\pi\)
−0.999603 + 0.0281728i \(0.991031\pi\)
\(74\) 6.88219i 0.800039i
\(75\) 4.66292 1.80477i 0.538427 0.208397i
\(76\) 8.67101i 0.994634i
\(77\) 0 0
\(78\) 0.960607 + 0.960607i 0.108767 + 0.108767i
\(79\) 16.2755i 1.83113i −0.402165 0.915567i \(-0.631742\pi\)
0.402165 0.915567i \(-0.368258\pi\)
\(80\) −0.461873 + 2.18785i −0.0516389 + 0.244609i
\(81\) −1.00000 −0.111111
\(82\) 3.64026 + 3.64026i 0.402000 + 0.402000i
\(83\) 8.11428 8.11428i 0.890658 0.890658i −0.103927 0.994585i \(-0.533141\pi\)
0.994585 + 0.103927i \(0.0331407\pi\)
\(84\) 0 0
\(85\) −4.31259 + 2.80914i −0.467767 + 0.304694i
\(86\) 9.91897 1.06959
\(87\) 1.41941 + 1.41941i 0.152177 + 0.152177i
\(88\) −2.10852 2.10852i −0.224769 0.224769i
\(89\) −12.3037 −1.30419 −0.652094 0.758138i \(-0.726109\pi\)
−0.652094 + 0.758138i \(0.726109\pi\)
\(90\) 1.87363 1.22045i 0.197498 0.128647i
\(91\) 0 0
\(92\) 1.36811 1.36811i 0.142635 0.142635i
\(93\) 0.126767 + 0.126767i 0.0131451 + 0.0131451i
\(94\) −0.285791 −0.0294771
\(95\) 4.00490 18.9709i 0.410894 1.94637i
\(96\) 1.00000i 0.102062i
\(97\) 7.44633 + 7.44633i 0.756060 + 0.756060i 0.975603 0.219543i \(-0.0704566\pi\)
−0.219543 + 0.975603i \(0.570457\pi\)
\(98\) 0 0
\(99\) 2.98190i 0.299692i
\(100\) −2.02101 + 4.57335i −0.202101 + 0.457335i
\(101\) 13.0344i 1.29697i −0.761225 0.648487i \(-0.775402\pi\)
0.761225 0.648487i \(-0.224598\pi\)
\(102\) −1.62757 + 1.62757i −0.161153 + 0.161153i
\(103\) 11.8321 11.8321i 1.16585 1.16585i 0.182674 0.983173i \(-0.441525\pi\)
0.983173 0.182674i \(-0.0584754\pi\)
\(104\) −1.35850 −0.133212
\(105\) 0 0
\(106\) 9.92390 0.963895
\(107\) −9.72604 + 9.72604i −0.940251 + 0.940251i −0.998313 0.0580616i \(-0.981508\pi\)
0.0580616 + 0.998313i \(0.481508\pi\)
\(108\) 0.707107 0.707107i 0.0680414 0.0680414i
\(109\) 4.56620i 0.437363i 0.975796 + 0.218681i \(0.0701756\pi\)
−0.975796 + 0.218681i \(0.929824\pi\)
\(110\) −3.63926 5.58699i −0.346990 0.532699i
\(111\) 6.88219i 0.653229i
\(112\) 0 0
\(113\) −11.4947 11.4947i −1.08133 1.08133i −0.996386 0.0849397i \(-0.972930\pi\)
−0.0849397 0.996386i \(-0.527070\pi\)
\(114\) 8.67101i 0.812115i
\(115\) 3.62510 2.36132i 0.338043 0.220194i
\(116\) −2.00735 −0.186378
\(117\) 0.960607 + 0.960607i 0.0888082 + 0.0888082i
\(118\) 5.01365 5.01365i 0.461544 0.461544i
\(119\) 0 0
\(120\) −0.461873 + 2.18785i −0.0421630 + 0.199722i
\(121\) −2.10826 −0.191660
\(122\) 1.70918 + 1.70918i 0.154742 + 0.154742i
\(123\) 3.64026 + 3.64026i 0.328231 + 0.328231i
\(124\) −0.179275 −0.0160994
\(125\) −6.53397 + 9.07233i −0.584416 + 0.811454i
\(126\) 0 0
\(127\) 0.555238 0.555238i 0.0492694 0.0492694i −0.682043 0.731312i \(-0.738908\pi\)
0.731312 + 0.682043i \(0.238908\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 9.91897 0.873317
\(130\) −2.97220 0.627456i −0.260679 0.0550315i
\(131\) 21.7261i 1.89822i −0.314947 0.949109i \(-0.601987\pi\)
0.314947 0.949109i \(-0.398013\pi\)
\(132\) −2.10852 2.10852i −0.183523 0.183523i
\(133\) 0 0
\(134\) 8.89591i 0.768489i
\(135\) 1.87363 1.22045i 0.161257 0.105039i
\(136\) 2.30173i 0.197371i
\(137\) −0.263241 + 0.263241i −0.0224902 + 0.0224902i −0.718262 0.695772i \(-0.755062\pi\)
0.695772 + 0.718262i \(0.255062\pi\)
\(138\) 1.36811 1.36811i 0.116461 0.116461i
\(139\) 16.1794 1.37232 0.686159 0.727452i \(-0.259295\pi\)
0.686159 + 0.727452i \(0.259295\pi\)
\(140\) 0 0
\(141\) −0.285791 −0.0240679
\(142\) 6.42398 6.42398i 0.539088 0.539088i
\(143\) 2.86444 2.86444i 0.239536 0.239536i
\(144\) 1.00000i 0.0833333i
\(145\) −4.39178 0.927140i −0.364717 0.0769948i
\(146\) 12.4187i 1.02778i
\(147\) 0 0
\(148\) 4.86644 + 4.86644i 0.400019 + 0.400019i
\(149\) 4.69989i 0.385030i −0.981294 0.192515i \(-0.938336\pi\)
0.981294 0.192515i \(-0.0616644\pi\)
\(150\) −2.02101 + 4.57335i −0.165015 + 0.373412i
\(151\) 8.11372 0.660285 0.330143 0.943931i \(-0.392903\pi\)
0.330143 + 0.943931i \(0.392903\pi\)
\(152\) 6.13133 + 6.13133i 0.497317 + 0.497317i
\(153\) −1.62757 + 1.62757i −0.131581 + 0.131581i
\(154\) 0 0
\(155\) −0.392226 0.0828022i −0.0315044 0.00665084i
\(156\) −1.35850 −0.108767
\(157\) 6.77980 + 6.77980i 0.541087 + 0.541087i 0.923848 0.382760i \(-0.125027\pi\)
−0.382760 + 0.923848i \(0.625027\pi\)
\(158\) 11.5085 + 11.5085i 0.915567 + 0.915567i
\(159\) 9.92390 0.787017
\(160\) −1.22045 1.87363i −0.0964849 0.148124i
\(161\) 0 0
\(162\) 0.707107 0.707107i 0.0555556 0.0555556i
\(163\) −4.53943 4.53943i −0.355556 0.355556i 0.506616 0.862172i \(-0.330896\pi\)
−0.862172 + 0.506616i \(0.830896\pi\)
\(164\) −5.14811 −0.402000
\(165\) −3.63926 5.58699i −0.283316 0.434947i
\(166\) 11.4753i 0.890658i
\(167\) 6.34259 + 6.34259i 0.490804 + 0.490804i 0.908560 0.417755i \(-0.137183\pi\)
−0.417755 + 0.908560i \(0.637183\pi\)
\(168\) 0 0
\(169\) 11.1545i 0.858036i
\(170\) 1.06310 5.03583i 0.0815364 0.386230i
\(171\) 8.67101i 0.663089i
\(172\) −7.01377 + 7.01377i −0.534795 + 0.534795i
\(173\) −13.9572 + 13.9572i −1.06115 + 1.06115i −0.0631450 + 0.998004i \(0.520113\pi\)
−0.998004 + 0.0631450i \(0.979887\pi\)
\(174\) −2.00735 −0.152177
\(175\) 0 0
\(176\) 2.98190 0.224769
\(177\) 5.01365 5.01365i 0.376849 0.376849i
\(178\) 8.70002 8.70002i 0.652094 0.652094i
\(179\) 8.00708i 0.598477i −0.954178 0.299238i \(-0.903267\pi\)
0.954178 0.299238i \(-0.0967326\pi\)
\(180\) −0.461873 + 2.18785i −0.0344259 + 0.163072i
\(181\) 0.990829i 0.0736478i −0.999322 0.0368239i \(-0.988276\pi\)
0.999322 0.0368239i \(-0.0117241\pi\)
\(182\) 0 0
\(183\) 1.70918 + 1.70918i 0.126346 + 0.126346i
\(184\) 1.93480i 0.142635i
\(185\) 8.39936 + 12.8947i 0.617533 + 0.948038i
\(186\) −0.179275 −0.0131451
\(187\) 4.85324 + 4.85324i 0.354904 + 0.354904i
\(188\) 0.202085 0.202085i 0.0147385 0.0147385i
\(189\) 0 0
\(190\) 10.5825 + 16.2463i 0.767737 + 1.17863i
\(191\) −2.98374 −0.215896 −0.107948 0.994157i \(-0.534428\pi\)
−0.107948 + 0.994157i \(0.534428\pi\)
\(192\) −0.707107 0.707107i −0.0510310 0.0510310i
\(193\) 11.1285 + 11.1285i 0.801044 + 0.801044i 0.983259 0.182215i \(-0.0583266\pi\)
−0.182215 + 0.983259i \(0.558327\pi\)
\(194\) −10.5307 −0.756060
\(195\) −2.97220 0.627456i −0.212844 0.0449330i
\(196\) 0 0
\(197\) 18.7450 18.7450i 1.33553 1.33553i 0.435187 0.900340i \(-0.356682\pi\)
0.900340 0.435187i \(-0.143318\pi\)
\(198\) −2.10852 2.10852i −0.149846 0.149846i
\(199\) −12.5284 −0.888118 −0.444059 0.895998i \(-0.646462\pi\)
−0.444059 + 0.895998i \(0.646462\pi\)
\(200\) −1.80477 4.66292i −0.127617 0.329718i
\(201\) 8.89591i 0.627469i
\(202\) 9.21674 + 9.21674i 0.648487 + 0.648487i
\(203\) 0 0
\(204\) 2.30173i 0.161153i
\(205\) −11.2633 2.37777i −0.786661 0.166071i
\(206\) 16.7331i 1.16585i
\(207\) 1.36811 1.36811i 0.0950901 0.0950901i
\(208\) 0.960607 0.960607i 0.0666061 0.0666061i
\(209\) −25.8561 −1.78850
\(210\) 0 0
\(211\) −2.04533 −0.140806 −0.0704031 0.997519i \(-0.522429\pi\)
−0.0704031 + 0.997519i \(0.522429\pi\)
\(212\) −7.01726 + 7.01726i −0.481947 + 0.481947i
\(213\) 6.42398 6.42398i 0.440164 0.440164i
\(214\) 13.7547i 0.940251i
\(215\) −18.5845 + 12.1056i −1.26745 + 0.825594i
\(216\) 1.00000i 0.0680414i
\(217\) 0 0
\(218\) −3.22879 3.22879i −0.218681 0.218681i
\(219\) 12.4187i 0.839176i
\(220\) 6.52395 + 1.37726i 0.439844 + 0.0928548i
\(221\) 3.12691 0.210338
\(222\) 4.86644 + 4.86644i 0.326614 + 0.326614i
\(223\) 1.00154 1.00154i 0.0670680 0.0670680i −0.672777 0.739845i \(-0.734899\pi\)
0.739845 + 0.672777i \(0.234899\pi\)
\(224\) 0 0
\(225\) −2.02101 + 4.57335i −0.134734 + 0.304890i
\(226\) 16.2559 1.08133
\(227\) −5.86104 5.86104i −0.389011 0.389011i 0.485324 0.874335i \(-0.338702\pi\)
−0.874335 + 0.485324i \(0.838702\pi\)
\(228\) 6.13133 + 6.13133i 0.406057 + 0.406057i
\(229\) −16.9122 −1.11759 −0.558796 0.829305i \(-0.688737\pi\)
−0.558796 + 0.829305i \(0.688737\pi\)
\(230\) −0.893630 + 4.23304i −0.0589242 + 0.279118i
\(231\) 0 0
\(232\) 1.41941 1.41941i 0.0931889 0.0931889i
\(233\) 7.30362 + 7.30362i 0.478476 + 0.478476i 0.904644 0.426168i \(-0.140137\pi\)
−0.426168 + 0.904644i \(0.640137\pi\)
\(234\) −1.35850 −0.0888082
\(235\) 0.535468 0.348793i 0.0349301 0.0227527i
\(236\) 7.09038i 0.461544i
\(237\) 11.5085 + 11.5085i 0.747557 + 0.747557i
\(238\) 0 0
\(239\) 0.400370i 0.0258978i 0.999916 + 0.0129489i \(0.00412187\pi\)
−0.999916 + 0.0129489i \(0.995878\pi\)
\(240\) −1.22045 1.87363i −0.0787796 0.120943i
\(241\) 25.1974i 1.62311i −0.584279 0.811553i \(-0.698623\pi\)
0.584279 0.811553i \(-0.301377\pi\)
\(242\) 1.49076 1.49076i 0.0958300 0.0958300i
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) −2.41715 −0.154742
\(245\) 0 0
\(246\) −5.14811 −0.328231
\(247\) −8.32944 + 8.32944i −0.529990 + 0.529990i
\(248\) 0.126767 0.126767i 0.00804969 0.00804969i
\(249\) 11.4753i 0.727219i
\(250\) −1.79489 11.0353i −0.113519 0.697935i
\(251\) 5.28383i 0.333513i 0.985998 + 0.166756i \(0.0533293\pi\)
−0.985998 + 0.166756i \(0.946671\pi\)
\(252\) 0 0
\(253\) −4.07957 4.07957i −0.256480 0.256480i
\(254\) 0.785225i 0.0492694i
\(255\) 1.06310 5.03583i 0.0665742 0.315356i
\(256\) 1.00000 0.0625000
\(257\) −11.3684 11.3684i −0.709143 0.709143i 0.257212 0.966355i \(-0.417196\pi\)
−0.966355 + 0.257212i \(0.917196\pi\)
\(258\) −7.01377 + 7.01377i −0.436658 + 0.436658i
\(259\) 0 0
\(260\) 2.54534 1.65798i 0.157855 0.102824i
\(261\) −2.00735 −0.124252
\(262\) 15.3627 + 15.3627i 0.949109 + 0.949109i
\(263\) 7.33228 + 7.33228i 0.452128 + 0.452128i 0.896060 0.443933i \(-0.146417\pi\)
−0.443933 + 0.896060i \(0.646417\pi\)
\(264\) 2.98190 0.183523
\(265\) −18.5938 + 12.1116i −1.14221 + 0.744010i
\(266\) 0 0
\(267\) 8.70002 8.70002i 0.532432 0.532432i
\(268\) 6.29036 + 6.29036i 0.384245 + 0.384245i
\(269\) 12.9743 0.791056 0.395528 0.918454i \(-0.370562\pi\)
0.395528 + 0.918454i \(0.370562\pi\)
\(270\) −0.461873 + 2.18785i −0.0281087 + 0.133148i
\(271\) 24.2245i 1.47153i 0.677236 + 0.735765i \(0.263177\pi\)
−0.677236 + 0.735765i \(0.736823\pi\)
\(272\) 1.62757 + 1.62757i 0.0986857 + 0.0986857i
\(273\) 0 0
\(274\) 0.372279i 0.0224902i
\(275\) 13.6373 + 6.02646i 0.822359 + 0.363409i
\(276\) 1.93480i 0.116461i
\(277\) −20.6360 + 20.6360i −1.23990 + 1.23990i −0.279858 + 0.960041i \(0.590287\pi\)
−0.960041 + 0.279858i \(0.909713\pi\)
\(278\) −11.4406 + 11.4406i −0.686159 + 0.686159i
\(279\) −0.179275 −0.0107329
\(280\) 0 0
\(281\) −2.67650 −0.159667 −0.0798334 0.996808i \(-0.525439\pi\)
−0.0798334 + 0.996808i \(0.525439\pi\)
\(282\) 0.202085 0.202085i 0.0120340 0.0120340i
\(283\) −9.28178 + 9.28178i −0.551744 + 0.551744i −0.926944 0.375200i \(-0.877574\pi\)
0.375200 + 0.926944i \(0.377574\pi\)
\(284\) 9.08488i 0.539088i
\(285\) 10.5825 + 16.2463i 0.626855 + 0.962348i
\(286\) 4.05093i 0.239536i
\(287\) 0 0
\(288\) −0.707107 0.707107i −0.0416667 0.0416667i
\(289\) 11.7021i 0.688356i
\(290\) 3.76104 2.44987i 0.220856 0.143861i
\(291\) −10.5307 −0.617320
\(292\) 8.78132 + 8.78132i 0.513888 + 0.513888i
\(293\) −4.32212 + 4.32212i −0.252501 + 0.252501i −0.821995 0.569494i \(-0.807139\pi\)
0.569494 + 0.821995i \(0.307139\pi\)
\(294\) 0 0
\(295\) −3.27485 + 15.5127i −0.190669 + 0.903182i
\(296\) −6.88219 −0.400019
\(297\) −2.10852 2.10852i −0.122349 0.122349i
\(298\) 3.32332 + 3.32332i 0.192515 + 0.192515i
\(299\) −2.62843 −0.152006
\(300\) −1.80477 4.66292i −0.104199 0.269214i
\(301\) 0 0
\(302\) −5.73727 + 5.73727i −0.330143 + 0.330143i
\(303\) 9.21674 + 9.21674i 0.529488 + 0.529488i
\(304\) −8.67101 −0.497317
\(305\) −5.28836 1.11642i −0.302810 0.0639258i
\(306\) 2.30173i 0.131581i
\(307\) 1.33625 + 1.33625i 0.0762637 + 0.0762637i 0.744210 0.667946i \(-0.232826\pi\)
−0.667946 + 0.744210i \(0.732826\pi\)
\(308\) 0 0
\(309\) 16.7331i 0.951911i
\(310\) 0.335896 0.218796i 0.0190776 0.0124268i
\(311\) 13.8982i 0.788094i −0.919090 0.394047i \(-0.871075\pi\)
0.919090 0.394047i \(-0.128925\pi\)
\(312\) 0.960607 0.960607i 0.0543837 0.0543837i
\(313\) 2.99558 2.99558i 0.169320 0.169320i −0.617360 0.786681i \(-0.711798\pi\)
0.786681 + 0.617360i \(0.211798\pi\)
\(314\) −9.58809 −0.541087
\(315\) 0 0
\(316\) −16.2755 −0.915567
\(317\) −22.3508 + 22.3508i −1.25534 + 1.25534i −0.302052 + 0.953291i \(0.597672\pi\)
−0.953291 + 0.302052i \(0.902328\pi\)
\(318\) −7.01726 + 7.01726i −0.393508 + 0.393508i
\(319\) 5.98572i 0.335136i
\(320\) 2.18785 + 0.461873i 0.122304 + 0.0258195i
\(321\) 13.7547i 0.767712i
\(322\) 0 0
\(323\) −14.1127 14.1127i −0.785249 0.785249i
\(324\) 1.00000i 0.0555556i
\(325\) 6.33459 2.45179i 0.351380 0.136001i
\(326\) 6.41973 0.355556
\(327\) −3.22879 3.22879i −0.178553 0.178553i
\(328\) 3.64026 3.64026i 0.201000 0.201000i
\(329\) 0 0
\(330\) 6.52395 + 1.37726i 0.359131 + 0.0758156i
\(331\) 29.1052 1.59977 0.799885 0.600154i \(-0.204894\pi\)
0.799885 + 0.600154i \(0.204894\pi\)
\(332\) −8.11428 8.11428i −0.445329 0.445329i
\(333\) 4.86644 + 4.86644i 0.266680 + 0.266680i
\(334\) −8.96978 −0.490804
\(335\) 10.8570 + 16.6677i 0.593181 + 0.910653i
\(336\) 0 0
\(337\) 8.28151 8.28151i 0.451123 0.451123i −0.444604 0.895727i \(-0.646656\pi\)
0.895727 + 0.444604i \(0.146656\pi\)
\(338\) −7.88740 7.88740i −0.429018 0.429018i
\(339\) 16.2559 0.882899
\(340\) 2.80914 + 4.31259i 0.152347 + 0.233883i
\(341\) 0.534581i 0.0289492i
\(342\) 6.13133 + 6.13133i 0.331545 + 0.331545i
\(343\) 0 0
\(344\) 9.91897i 0.534795i
\(345\) −0.893630 + 4.23304i −0.0481114 + 0.227899i
\(346\) 19.7385i 1.06115i
\(347\) 1.56698 1.56698i 0.0841199 0.0841199i −0.663795 0.747915i \(-0.731055\pi\)
0.747915 + 0.663795i \(0.231055\pi\)
\(348\) 1.41941 1.41941i 0.0760884 0.0760884i
\(349\) −29.6857 −1.58904 −0.794520 0.607237i \(-0.792278\pi\)
−0.794520 + 0.607237i \(0.792278\pi\)
\(350\) 0 0
\(351\) −1.35850 −0.0725116
\(352\) −2.10852 + 2.10852i −0.112385 + 0.112385i
\(353\) 13.3833 13.3833i 0.712322 0.712322i −0.254699 0.967020i \(-0.581976\pi\)
0.967020 + 0.254699i \(0.0819763\pi\)
\(354\) 7.09038i 0.376849i
\(355\) −4.19605 + 19.8763i −0.222703 + 1.05493i
\(356\) 12.3037i 0.652094i
\(357\) 0 0
\(358\) 5.66186 + 5.66186i 0.299238 + 0.299238i
\(359\) 35.0203i 1.84830i 0.382028 + 0.924151i \(0.375226\pi\)
−0.382028 + 0.924151i \(0.624774\pi\)
\(360\) −1.22045 1.87363i −0.0643233 0.0987492i
\(361\) 56.1865 2.95718
\(362\) 0.700622 + 0.700622i 0.0368239 + 0.0368239i
\(363\) 1.49076 1.49076i 0.0782448 0.0782448i
\(364\) 0 0
\(365\) 15.1563 + 23.2680i 0.793319 + 1.21790i
\(366\) −2.41715 −0.126346
\(367\) −0.0545117 0.0545117i −0.00284549 0.00284549i 0.705683 0.708528i \(-0.250640\pi\)
−0.708528 + 0.705683i \(0.750640\pi\)
\(368\) −1.36811 1.36811i −0.0713176 0.0713176i
\(369\) −5.14811 −0.268000
\(370\) −15.0572 3.17870i −0.782786 0.165253i
\(371\) 0 0
\(372\) 0.126767 0.126767i 0.00657254 0.00657254i
\(373\) −4.00265 4.00265i −0.207249 0.207249i 0.595848 0.803097i \(-0.296816\pi\)
−0.803097 + 0.595848i \(0.796816\pi\)
\(374\) −6.86352 −0.354904
\(375\) −1.79489 11.0353i −0.0926880 0.569862i
\(376\) 0.285791i 0.0147385i
\(377\) 1.92828 + 1.92828i 0.0993113 + 0.0993113i
\(378\) 0 0
\(379\) 9.12109i 0.468519i 0.972174 + 0.234259i \(0.0752665\pi\)
−0.972174 + 0.234259i \(0.924734\pi\)
\(380\) −18.9709 4.00490i −0.973184 0.205447i
\(381\) 0.785225i 0.0402283i
\(382\) 2.10983 2.10983i 0.107948 0.107948i
\(383\) 1.26869 1.26869i 0.0648269 0.0648269i −0.673950 0.738777i \(-0.735404\pi\)
0.738777 + 0.673950i \(0.235404\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) −15.7380 −0.801044
\(387\) −7.01377 + 7.01377i −0.356530 + 0.356530i
\(388\) 7.44633 7.44633i 0.378030 0.378030i
\(389\) 19.8245i 1.00514i 0.864535 + 0.502572i \(0.167613\pi\)
−0.864535 + 0.502572i \(0.832387\pi\)
\(390\) 2.54534 1.65798i 0.128888 0.0839553i
\(391\) 4.45337i 0.225217i
\(392\) 0 0
\(393\) 15.3627 + 15.3627i 0.774945 + 0.774945i
\(394\) 26.5095i 1.33553i
\(395\) −35.6083 7.51720i −1.79165 0.378231i
\(396\) 2.98190 0.149846
\(397\) −17.2323 17.2323i −0.864865 0.864865i 0.127034 0.991898i \(-0.459454\pi\)
−0.991898 + 0.127034i \(0.959454\pi\)
\(398\) 8.85895 8.85895i 0.444059 0.444059i
\(399\) 0 0
\(400\) 4.57335 + 2.02101i 0.228667 + 0.101051i
\(401\) 37.9336 1.89431 0.947157 0.320771i \(-0.103942\pi\)
0.947157 + 0.320771i \(0.103942\pi\)
\(402\) 6.29036 + 6.29036i 0.313734 + 0.313734i
\(403\) 0.172213 + 0.172213i 0.00857854 + 0.00857854i
\(404\) −13.0344 −0.648487
\(405\) −0.461873 + 2.18785i −0.0229506 + 0.108715i
\(406\) 0 0
\(407\) 14.5113 14.5113i 0.719297 0.719297i
\(408\) 1.62757 + 1.62757i 0.0805765 + 0.0805765i
\(409\) −2.07501 −0.102602 −0.0513012 0.998683i \(-0.516337\pi\)
−0.0513012 + 0.998683i \(0.516337\pi\)
\(410\) 9.64567 6.28300i 0.476366 0.310295i
\(411\) 0.372279i 0.0183632i
\(412\) −11.8321 11.8321i −0.582924 0.582924i
\(413\) 0 0
\(414\) 1.93480i 0.0950901i
\(415\) −14.0050 21.5006i −0.687481 1.05542i
\(416\) 1.35850i 0.0666061i
\(417\) −11.4406 + 11.4406i −0.560246 + 0.560246i
\(418\) 18.2830 18.2830i 0.894252 0.894252i
\(419\) −12.9408 −0.632199 −0.316100 0.948726i \(-0.602373\pi\)
−0.316100 + 0.948726i \(0.602373\pi\)
\(420\) 0 0
\(421\) 6.83341 0.333040 0.166520 0.986038i \(-0.446747\pi\)
0.166520 + 0.986038i \(0.446747\pi\)
\(422\) 1.44627 1.44627i 0.0704031 0.0704031i
\(423\) 0.202085 0.202085i 0.00982570 0.00982570i
\(424\) 9.92390i 0.481947i
\(425\) 4.15409 + 10.7328i 0.201503 + 0.520615i
\(426\) 9.08488i 0.440164i
\(427\) 0 0
\(428\) 9.72604 + 9.72604i 0.470126 + 0.470126i
\(429\) 4.05093i 0.195581i
\(430\) 4.58130 21.7012i 0.220930 1.04652i
\(431\) 14.6990 0.708025 0.354012 0.935241i \(-0.384817\pi\)
0.354012 + 0.935241i \(0.384817\pi\)
\(432\) −0.707107 0.707107i −0.0340207 0.0340207i
\(433\) 3.88941 3.88941i 0.186913 0.186913i −0.607447 0.794360i \(-0.707806\pi\)
0.794360 + 0.607447i \(0.207806\pi\)
\(434\) 0 0
\(435\) 3.76104 2.44987i 0.180328 0.117462i
\(436\) 4.56620 0.218681
\(437\) 11.8629 + 11.8629i 0.567479 + 0.567479i
\(438\) 8.78132 + 8.78132i 0.419588 + 0.419588i
\(439\) 34.1693 1.63081 0.815407 0.578888i \(-0.196513\pi\)
0.815407 + 0.578888i \(0.196513\pi\)
\(440\) −5.58699 + 3.63926i −0.266350 + 0.173495i
\(441\) 0 0
\(442\) −2.21106 + 2.21106i −0.105169 + 0.105169i
\(443\) −3.60361 3.60361i −0.171213 0.171213i 0.616299 0.787512i \(-0.288631\pi\)
−0.787512 + 0.616299i \(0.788631\pi\)
\(444\) −6.88219 −0.326614
\(445\) −5.68273 + 26.9186i −0.269387 + 1.27606i
\(446\) 1.41639i 0.0670680i
\(447\) 3.32332 + 3.32332i 0.157188 + 0.157188i
\(448\) 0 0
\(449\) 30.3696i 1.43323i 0.697468 + 0.716616i \(0.254310\pi\)
−0.697468 + 0.716616i \(0.745690\pi\)
\(450\) −1.80477 4.66292i −0.0850778 0.219812i
\(451\) 15.3511i 0.722857i
\(452\) −11.4947 + 11.4947i −0.540663 + 0.540663i
\(453\) −5.73727 + 5.73727i −0.269560 + 0.269560i
\(454\) 8.28876 0.389011
\(455\) 0 0
\(456\) −8.67101 −0.406057
\(457\) 6.16746 6.16746i 0.288501 0.288501i −0.547986 0.836487i \(-0.684605\pi\)
0.836487 + 0.547986i \(0.184605\pi\)
\(458\) 11.9588 11.9588i 0.558796 0.558796i
\(459\) 2.30173i 0.107435i
\(460\) −2.36132 3.62510i −0.110097 0.169021i
\(461\) 27.4227i 1.27720i −0.769539 0.638600i \(-0.779514\pi\)
0.769539 0.638600i \(-0.220486\pi\)
\(462\) 0 0
\(463\) −17.0916 17.0916i −0.794315 0.794315i 0.187878 0.982192i \(-0.439839\pi\)
−0.982192 + 0.187878i \(0.939839\pi\)
\(464\) 2.00735i 0.0931889i
\(465\) 0.335896 0.218796i 0.0155768 0.0101464i
\(466\) −10.3289 −0.478476
\(467\) 11.2210 + 11.2210i 0.519245 + 0.519245i 0.917343 0.398098i \(-0.130330\pi\)
−0.398098 + 0.917343i \(0.630330\pi\)
\(468\) 0.960607 0.960607i 0.0444041 0.0444041i
\(469\) 0 0
\(470\) −0.131999 + 0.625267i −0.00608866 + 0.0288414i
\(471\) −9.58809 −0.441796
\(472\) −5.01365 5.01365i −0.230772 0.230772i
\(473\) 20.9144 + 20.9144i 0.961644 + 0.961644i
\(474\) −16.2755 −0.747557
\(475\) −39.6556 17.5242i −1.81952 0.804067i
\(476\) 0 0
\(477\) −7.01726 + 7.01726i −0.321298 + 0.321298i
\(478\) −0.283104 0.283104i −0.0129489 0.0129489i
\(479\) −0.0440032 −0.00201056 −0.00100528 0.999999i \(-0.500320\pi\)
−0.00100528 + 0.999999i \(0.500320\pi\)
\(480\) 2.18785 + 0.461873i 0.0998611 + 0.0210815i
\(481\) 9.34949i 0.426300i
\(482\) 17.8172 + 17.8172i 0.811553 + 0.811553i
\(483\) 0 0
\(484\) 2.10826i 0.0958300i
\(485\) 19.7307 12.8522i 0.895924 0.583587i
\(486\) 1.00000i 0.0453609i
\(487\) 22.1406 22.1406i 1.00329 1.00329i 0.00329256 0.999995i \(-0.498952\pi\)
0.999995 0.00329256i \(-0.00104806\pi\)
\(488\) 1.70918 1.70918i 0.0773711 0.0773711i
\(489\) 6.41973 0.290310
\(490\) 0 0
\(491\) 24.8031 1.11935 0.559675 0.828712i \(-0.310926\pi\)
0.559675 + 0.828712i \(0.310926\pi\)
\(492\) 3.64026 3.64026i 0.164116 0.164116i
\(493\) −3.26710 + 3.26710i −0.147143 + 0.147143i
\(494\) 11.7796i 0.529990i
\(495\) 6.52395 + 1.37726i 0.293230 + 0.0619032i
\(496\) 0.179275i 0.00804969i
\(497\) 0 0
\(498\) −8.11428 8.11428i −0.363610 0.363610i
\(499\) 33.0665i 1.48026i −0.672465 0.740129i \(-0.734764\pi\)
0.672465 0.740129i \(-0.265236\pi\)
\(500\) 9.07233 + 6.53397i 0.405727 + 0.292208i
\(501\) −8.96978 −0.400740
\(502\) −3.73623 3.73623i −0.166756 0.166756i
\(503\) 15.9126 15.9126i 0.709510 0.709510i −0.256922 0.966432i \(-0.582708\pi\)
0.966432 + 0.256922i \(0.0827084\pi\)
\(504\) 0 0
\(505\) −28.5173 6.02025i −1.26901 0.267897i
\(506\) 5.76938 0.256480
\(507\) −7.88740 7.88740i −0.350292 0.350292i
\(508\) −0.555238 0.555238i −0.0246347 0.0246347i
\(509\) 33.6114 1.48980 0.744900 0.667176i \(-0.232497\pi\)
0.744900 + 0.667176i \(0.232497\pi\)
\(510\) 2.80914 + 4.31259i 0.124391 + 0.190965i
\(511\) 0 0
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 6.13133 + 6.13133i 0.270705 + 0.270705i
\(514\) 16.0774 0.709143
\(515\) −20.4218 31.3516i −0.899894 1.38152i
\(516\) 9.91897i 0.436658i
\(517\) −0.602597 0.602597i −0.0265022 0.0265022i
\(518\) 0 0
\(519\) 19.7385i 0.866425i
\(520\) −0.627456 + 2.97220i −0.0275158 + 0.130340i
\(521\) 37.0838i 1.62467i 0.583189 + 0.812336i \(0.301805\pi\)
−0.583189 + 0.812336i \(0.698195\pi\)
\(522\) 1.41941 1.41941i 0.0621259 0.0621259i
\(523\) 3.64979 3.64979i 0.159594 0.159594i −0.622793 0.782387i \(-0.714002\pi\)
0.782387 + 0.622793i \(0.214002\pi\)
\(524\) −21.7261 −0.949109
\(525\) 0 0
\(526\) −10.3694 −0.452128
\(527\) −0.291782 + 0.291782i −0.0127102 + 0.0127102i
\(528\) −2.10852 + 2.10852i −0.0917617 + 0.0917617i
\(529\) 19.2566i 0.837242i
\(530\) 4.58358 21.7120i 0.199098 0.943108i
\(531\) 7.09038i 0.307696i
\(532\) 0 0
\(533\) 4.94531 + 4.94531i 0.214205 + 0.214205i
\(534\) 12.3037i 0.532432i
\(535\) 16.7869 + 25.7713i 0.725760 + 1.11419i
\(536\) −8.89591 −0.384245
\(537\) 5.66186 + 5.66186i 0.244327 + 0.244327i
\(538\) −9.17421 + 9.17421i −0.395528 + 0.395528i
\(539\) 0 0
\(540\) −1.22045 1.87363i −0.0525197 0.0806284i
\(541\) −41.0619 −1.76539 −0.882694 0.469949i \(-0.844272\pi\)
−0.882694 + 0.469949i \(0.844272\pi\)
\(542\) −17.1293 17.1293i −0.735765 0.735765i
\(543\) 0.700622 + 0.700622i 0.0300666 + 0.0300666i
\(544\) −2.30173 −0.0986857
\(545\) 9.99015 + 2.10900i 0.427931 + 0.0903398i
\(546\) 0 0
\(547\) 8.69386 8.69386i 0.371723 0.371723i −0.496382 0.868104i \(-0.665338\pi\)
0.868104 + 0.496382i \(0.165338\pi\)
\(548\) 0.263241 + 0.263241i 0.0112451 + 0.0112451i
\(549\) −2.41715 −0.103161
\(550\) −13.9044 + 5.38166i −0.592884 + 0.229475i
\(551\) 17.4058i 0.741511i
\(552\) −1.36811 1.36811i −0.0582306 0.0582306i
\(553\) 0 0
\(554\) 29.1838i 1.23990i
\(555\) −15.0572 3.17870i −0.639142 0.134928i
\(556\) 16.1794i 0.686159i
\(557\) −16.9052 + 16.9052i −0.716298 + 0.716298i −0.967845 0.251547i \(-0.919061\pi\)
0.251547 + 0.967845i \(0.419061\pi\)
\(558\) 0.126767 0.126767i 0.00536646 0.00536646i
\(559\) 13.4750 0.569930
\(560\) 0 0
\(561\) −6.86352 −0.289778
\(562\) 1.89257 1.89257i 0.0798334 0.0798334i
\(563\) 6.12576 6.12576i 0.258170 0.258170i −0.566139 0.824309i \(-0.691564\pi\)
0.824309 + 0.566139i \(0.191564\pi\)
\(564\) 0.285791i 0.0120340i
\(565\) −30.4576 + 19.8395i −1.28136 + 0.834653i
\(566\) 13.1264i 0.551744i
\(567\) 0 0
\(568\) −6.42398 6.42398i −0.269544 0.269544i
\(569\) 11.7783i 0.493774i 0.969044 + 0.246887i \(0.0794076\pi\)
−0.969044 + 0.246887i \(0.920592\pi\)
\(570\) −18.9709 4.00490i −0.794601 0.167747i
\(571\) 32.9997 1.38099 0.690497 0.723336i \(-0.257392\pi\)
0.690497 + 0.723336i \(0.257392\pi\)
\(572\) −2.86444 2.86444i −0.119768 0.119768i
\(573\) 2.10983 2.10983i 0.0881392 0.0881392i
\(574\) 0 0
\(575\) −3.49187 9.02180i −0.145621 0.376235i
\(576\) 1.00000 0.0416667
\(577\) 16.5978 + 16.5978i 0.690977 + 0.690977i 0.962447 0.271470i \(-0.0875097\pi\)
−0.271470 + 0.962447i \(0.587510\pi\)
\(578\) 8.27460 + 8.27460i 0.344178 + 0.344178i
\(579\) −15.7380 −0.654050
\(580\) −0.927140 + 4.39178i −0.0384974 + 0.182359i
\(581\) 0 0
\(582\) 7.44633 7.44633i 0.308660 0.308660i
\(583\) 20.9248 + 20.9248i 0.866616 + 0.866616i
\(584\) −12.4187 −0.513888
\(585\) 2.54534 1.65798i 0.105237 0.0685492i
\(586\) 6.11241i 0.252501i
\(587\) 5.05632 + 5.05632i 0.208697 + 0.208697i 0.803713 0.595017i \(-0.202855\pi\)
−0.595017 + 0.803713i \(0.702855\pi\)
\(588\) 0 0
\(589\) 1.55450i 0.0640519i
\(590\) −8.65344 13.2848i −0.356256 0.546925i
\(591\) 26.5095i 1.09045i
\(592\) 4.86644 4.86644i 0.200010 0.200010i
\(593\) −22.5468 + 22.5468i −0.925887 + 0.925887i −0.997437 0.0715498i \(-0.977206\pi\)
0.0715498 + 0.997437i \(0.477206\pi\)
\(594\) 2.98190 0.122349
\(595\) 0 0
\(596\) −4.69989 −0.192515
\(597\) 8.85895 8.85895i 0.362573 0.362573i
\(598\) 1.85858 1.85858i 0.0760030 0.0760030i
\(599\) 0.0359300i 0.00146806i −1.00000 0.000734031i \(-0.999766\pi\)
1.00000 0.000734031i \(-0.000233649\pi\)
\(600\) 4.57335 + 2.02101i 0.186706 + 0.0825075i
\(601\) 24.8609i 1.01410i −0.861917 0.507049i \(-0.830736\pi\)
0.861917 0.507049i \(-0.169264\pi\)
\(602\) 0 0
\(603\) 6.29036 + 6.29036i 0.256163 + 0.256163i
\(604\) 8.11372i 0.330143i
\(605\) −0.973747 + 4.61255i −0.0395884 + 0.187527i
\(606\) −13.0344 −0.529488
\(607\) −1.09064 1.09064i −0.0442678 0.0442678i 0.684626 0.728894i \(-0.259965\pi\)
−0.728894 + 0.684626i \(0.759965\pi\)
\(608\) 6.13133 6.13133i 0.248658 0.248658i
\(609\) 0 0
\(610\) 4.52886 2.95001i 0.183368 0.119442i
\(611\) −0.388248 −0.0157068
\(612\) 1.62757 + 1.62757i 0.0657905 + 0.0657905i
\(613\) −16.4865 16.4865i −0.665882 0.665882i 0.290878 0.956760i \(-0.406053\pi\)
−0.956760 + 0.290878i \(0.906053\pi\)
\(614\) −1.88974 −0.0762637
\(615\) 9.64567 6.28300i 0.388951 0.253355i
\(616\) 0 0
\(617\) 5.22561 5.22561i 0.210375 0.210375i −0.594052 0.804427i \(-0.702473\pi\)
0.804427 + 0.594052i \(0.202473\pi\)
\(618\) −11.8321 11.8321i −0.475955 0.475955i
\(619\) −25.9888 −1.04458 −0.522289 0.852768i \(-0.674922\pi\)
−0.522289 + 0.852768i \(0.674922\pi\)
\(620\) −0.0828022 + 0.392226i −0.00332542 + 0.0157522i
\(621\) 1.93480i 0.0776407i
\(622\) 9.82751 + 9.82751i 0.394047 + 0.394047i
\(623\) 0 0
\(624\) 1.35850i 0.0543837i
\(625\) 16.8310 + 18.4856i 0.673241 + 0.739423i
\(626\) 4.23639i 0.169320i
\(627\) 18.2830 18.2830i 0.730154 0.730154i
\(628\) 6.77980 6.77980i 0.270544 0.270544i
\(629\) 15.8409 0.631619
\(630\) 0 0
\(631\) 1.56613 0.0623468 0.0311734 0.999514i \(-0.490076\pi\)
0.0311734 + 0.999514i \(0.490076\pi\)
\(632\) 11.5085 11.5085i 0.457784 0.457784i
\(633\) 1.44627 1.44627i 0.0574839 0.0574839i
\(634\) 31.6087i 1.25534i
\(635\) −0.958326 1.47122i −0.0380300 0.0583838i
\(636\) 9.92390i 0.393508i
\(637\) 0 0
\(638\) −4.23255 4.23255i −0.167568 0.167568i
\(639\) 9.08488i 0.359392i
\(640\) −1.87363 + 1.22045i −0.0740619 + 0.0482424i
\(641\) −27.1075 −1.07068 −0.535341 0.844636i \(-0.679817\pi\)
−0.535341 + 0.844636i \(0.679817\pi\)
\(642\) 9.72604 + 9.72604i 0.383856 + 0.383856i
\(643\) 24.8300 24.8300i 0.979200 0.979200i −0.0205877 0.999788i \(-0.506554\pi\)
0.999788 + 0.0205877i \(0.00655374\pi\)
\(644\) 0 0
\(645\) 4.58130 21.7012i 0.180389 0.854483i
\(646\) 19.9583 0.785249
\(647\) 1.65076 + 1.65076i 0.0648980 + 0.0648980i 0.738811 0.673913i \(-0.235388\pi\)
−0.673913 + 0.738811i \(0.735388\pi\)
\(648\) −0.707107 0.707107i −0.0277778 0.0277778i
\(649\) 21.1428 0.829928
\(650\) −2.74555 + 6.21291i −0.107689 + 0.243690i
\(651\) 0 0
\(652\) −4.53943 + 4.53943i −0.177778 + 0.177778i
\(653\) −25.5390 25.5390i −0.999419 0.999419i 0.000580655 1.00000i \(-0.499815\pi\)
−1.00000 0.000580655i \(0.999815\pi\)
\(654\) 4.56620 0.178553
\(655\) −47.5334 10.0347i −1.85728 0.392088i
\(656\) 5.14811i 0.201000i
\(657\) 8.78132 + 8.78132i 0.342592 + 0.342592i
\(658\) 0 0
\(659\) 13.1119i 0.510768i 0.966840 + 0.255384i \(0.0822019\pi\)
−0.966840 + 0.255384i \(0.917798\pi\)
\(660\) −5.58699 + 3.63926i −0.217473 + 0.141658i
\(661\) 10.4554i 0.406669i 0.979109 + 0.203334i \(0.0651779\pi\)
−0.979109 + 0.203334i \(0.934822\pi\)
\(662\) −20.5805 + 20.5805i −0.799885 + 0.799885i
\(663\) −2.21106 + 2.21106i −0.0858703 + 0.0858703i
\(664\) 11.4753 0.445329
\(665\) 0 0
\(666\) −6.88219 −0.266680
\(667\) 2.74627 2.74627i 0.106336 0.106336i
\(668\) 6.34259 6.34259i 0.245402 0.245402i
\(669\) 1.41639i 0.0547608i
\(670\) −19.4629 4.10878i −0.751917 0.158736i
\(671\) 7.20771i 0.278250i
\(672\) 0 0
\(673\) 17.0926 + 17.0926i 0.658871 + 0.658871i 0.955113 0.296242i \(-0.0957335\pi\)
−0.296242 + 0.955113i \(0.595733\pi\)
\(674\) 11.7118i 0.451123i
\(675\) −1.80477 4.66292i −0.0694658 0.179476i
\(676\) 11.1545 0.429018
\(677\) 20.1314 + 20.1314i 0.773714 + 0.773714i 0.978754 0.205040i \(-0.0657323\pi\)
−0.205040 + 0.978754i \(0.565732\pi\)
\(678\) −11.4947 + 11.4947i −0.441449 + 0.441449i
\(679\) 0 0
\(680\) −5.03583 1.06310i −0.193115 0.0407682i
\(681\) 8.28876 0.317626
\(682\) −0.378006 0.378006i −0.0144746 0.0144746i
\(683\) −32.8781 32.8781i −1.25805 1.25805i −0.952024 0.306022i \(-0.901002\pi\)
−0.306022 0.952024i \(-0.598998\pi\)
\(684\) −8.67101 −0.331545
\(685\) 0.454348 + 0.697515i 0.0173597 + 0.0266507i
\(686\) 0 0
\(687\) 11.9588 11.9588i 0.456255 0.456255i
\(688\) 7.01377 + 7.01377i 0.267398 + 0.267398i
\(689\) 13.4817 0.513611
\(690\) −2.36132 3.62510i −0.0898939 0.138005i
\(691\) 15.9822i 0.607991i 0.952673 + 0.303996i \(0.0983208\pi\)
−0.952673 + 0.303996i \(0.901679\pi\)
\(692\) 13.9572 + 13.9572i 0.530575 + 0.530575i
\(693\) 0 0
\(694\) 2.21605i 0.0841199i
\(695\) 7.47281 35.3980i 0.283460 1.34272i
\(696\) 2.00735i 0.0760884i
\(697\) −8.37888 + 8.37888i −0.317373 + 0.317373i
\(698\) 20.9910 20.9910i 0.794520 0.794520i
\(699\) −10.3289 −0.390674
\(700\) 0 0
\(701\) −32.0051 −1.20882 −0.604408 0.796675i \(-0.706590\pi\)
−0.604408 + 0.796675i \(0.706590\pi\)
\(702\) 0.960607 0.960607i 0.0362558 0.0362558i
\(703\) −42.1970 + 42.1970i −1.59149 + 1.59149i
\(704\) 2.98190i 0.112385i
\(705\) −0.131999 + 0.625267i −0.00497137 + 0.0235489i
\(706\) 18.9269i 0.712322i
\(707\) 0 0
\(708\) −5.01365 5.01365i −0.188425 0.188425i
\(709\) 1.77069i 0.0664998i −0.999447 0.0332499i \(-0.989414\pi\)
0.999447 0.0332499i \(-0.0105857\pi\)
\(710\) −11.0876 17.0217i −0.416111 0.638814i
\(711\) −16.2755 −0.610378
\(712\) −8.70002 8.70002i −0.326047 0.326047i
\(713\) 0.245268 0.245268i 0.00918535 0.00918535i
\(714\) 0 0
\(715\) −4.94395 7.58996i −0.184893 0.283848i
\(716\) −8.00708 −0.299238
\(717\) −0.283104 0.283104i −0.0105727 0.0105727i
\(718\) −24.7631 24.7631i −0.924151 0.924151i
\(719\) 10.8718 0.405451 0.202725 0.979236i \(-0.435020\pi\)
0.202725 + 0.979236i \(0.435020\pi\)
\(720\) 2.18785 + 0.461873i 0.0815362 + 0.0172130i
\(721\) 0 0
\(722\) −39.7298 + 39.7298i −1.47859 + 1.47859i
\(723\) 17.8172 + 17.8172i 0.662630 + 0.662630i
\(724\) −0.990829 −0.0368239
\(725\) −4.05688 + 9.18031i −0.150669 + 0.340948i
\(726\) 2.10826i 0.0782448i
\(727\) 9.64027 + 9.64027i 0.357538 + 0.357538i 0.862905 0.505367i \(-0.168643\pi\)
−0.505367 + 0.862905i \(0.668643\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) −27.1701 5.73584i −1.00561 0.212293i
\(731\) 22.8308i 0.844426i
\(732\) 1.70918 1.70918i 0.0631732 0.0631732i
\(733\) −6.07900 + 6.07900i −0.224533 + 0.224533i −0.810404 0.585871i \(-0.800752\pi\)
0.585871 + 0.810404i \(0.300752\pi\)
\(734\) 0.0770912 0.00284549
\(735\) 0 0
\(736\) 1.93480 0.0713176
\(737\) 18.7572 18.7572i 0.690931 0.690931i
\(738\) 3.64026 3.64026i 0.134000 0.134000i
\(739\) 27.0495i 0.995032i −0.867455 0.497516i \(-0.834246\pi\)
0.867455 0.497516i \(-0.165754\pi\)
\(740\) 12.8947 8.39936i 0.474019 0.308767i
\(741\) 11.7796i 0.432735i
\(742\) 0 0
\(743\) 24.6470 + 24.6470i 0.904210 + 0.904210i 0.995797 0.0915872i \(-0.0291940\pi\)
−0.0915872 + 0.995797i \(0.529194\pi\)
\(744\) 0.179275i 0.00657254i
\(745\) −10.2826 2.17075i −0.376727 0.0795301i
\(746\) 5.66060 0.207249
\(747\) −8.11428 8.11428i −0.296886 0.296886i
\(748\) 4.85324 4.85324i 0.177452 0.177452i
\(749\) 0 0
\(750\) 9.07233 + 6.53397i 0.331275 + 0.238587i
\(751\) −28.9452 −1.05623 −0.528113 0.849174i \(-0.677100\pi\)
−0.528113 + 0.849174i \(0.677100\pi\)
\(752\) −0.202085 0.202085i −0.00736927 0.00736927i
\(753\) −3.73623 3.73623i −0.136156 0.136156i
\(754\) −2.72699 −0.0993113
\(755\) 3.74750 17.7516i 0.136386 0.646046i
\(756\) 0 0
\(757\) 16.4988 16.4988i 0.599661 0.599661i −0.340562 0.940222i \(-0.610617\pi\)
0.940222 + 0.340562i \(0.110617\pi\)
\(758\) −6.44958 6.44958i −0.234259 0.234259i
\(759\) 5.76938 0.209415
\(760\) 16.2463 10.5825i 0.589316 0.383868i
\(761\) 47.2049i 1.71118i −0.517658 0.855588i \(-0.673196\pi\)
0.517658 0.855588i \(-0.326804\pi\)
\(762\) −0.555238 0.555238i −0.0201141 0.0201141i
\(763\) 0 0
\(764\) 2.98374i 0.107948i
\(765\) 2.80914 + 4.31259i 0.101565 + 0.155922i
\(766\) 1.79420i 0.0648269i
\(767\) 6.81107 6.81107i 0.245933 0.245933i
\(768\) −0.707107 + 0.707107i −0.0255155 + 0.0255155i
\(769\) 5.30753 0.191394 0.0956971 0.995410i \(-0.469492\pi\)
0.0956971 + 0.995410i \(0.469492\pi\)
\(770\) 0 0
\(771\) 16.0774 0.579013
\(772\) 11.1285 11.1285i 0.400522 0.400522i
\(773\) 30.1160 30.1160i 1.08320 1.08320i 0.0869880 0.996209i \(-0.472276\pi\)
0.996209 0.0869880i \(-0.0277242\pi\)
\(774\) 9.91897i 0.356530i
\(775\) −0.362317 + 0.819887i −0.0130148 + 0.0294512i
\(776\) 10.5307i 0.378030i
\(777\) 0 0
\(778\) −14.0181 14.0181i −0.502572 0.502572i
\(779\) 44.6393i 1.59937i
\(780\) −0.627456 + 2.97220i −0.0224665 + 0.106422i
\(781\) 27.0902 0.969364
\(782\) 3.14901 + 3.14901i 0.112608 + 0.112608i
\(783\) 1.41941 1.41941i 0.0507256 0.0507256i
\(784\) 0 0
\(785\) 17.9646 11.7018i 0.641183 0.417654i
\(786\) −21.7261 −0.774945
\(787\) −19.9216 19.9216i −0.710128 0.710128i 0.256433 0.966562i \(-0.417453\pi\)
−0.966562 + 0.256433i \(0.917453\pi\)
\(788\) −18.7450 18.7450i −0.667763 0.667763i
\(789\) −10.3694 −0.369161
\(790\) 30.4943 19.8634i 1.08494 0.706707i
\(791\) 0 0
\(792\) −2.10852 + 2.10852i −0.0749231 + 0.0749231i
\(793\) 2.32193 + 2.32193i 0.0824543 + 0.0824543i
\(794\) 24.3702 0.864865
\(795\) 4.58358 21.7120i 0.162563 0.770045i
\(796\) 12.5284i 0.444059i
\(797\) −11.2338 11.2338i −0.397922 0.397922i 0.479577 0.877500i \(-0.340790\pi\)
−0.877500 + 0.479577i \(0.840790\pi\)
\(798\) 0 0
\(799\) 0.657813i 0.0232717i
\(800\) −4.66292 + 1.80477i −0.164859 + 0.0638084i
\(801\) 12.3037i 0.434729i
\(802\) −26.8231 + 26.8231i −0.947157 + 0.947157i
\(803\) 26.1850 26.1850i 0.924050 0.924050i
\(804\) −8.89591 −0.313734
\(805\) 0 0
\(806\) −0.243546 −0.00857854
\(807\) −9.17421 + 9.17421i −0.322947 + 0.322947i
\(808\) 9.21674 9.21674i 0.324244 0.324244i
\(809\) 13.0198i 0.457752i 0.973456 + 0.228876i \(0.0735050\pi\)
−0.973456 + 0.228876i \(0.926495\pi\)
\(810\) −1.22045 1.87363i −0.0428822 0.0658328i
\(811\) 45.1419i 1.58514i 0.609778 + 0.792572i \(0.291259\pi\)
−0.609778 + 0.792572i \(0.708741\pi\)
\(812\) 0 0
\(813\) −17.1293 17.1293i −0.600750 0.600750i
\(814\) 20.5220i 0.719297i
\(815\) −12.0282 + 7.83495i −0.421330 + 0.274446i
\(816\) −2.30173 −0.0805765
\(817\) −60.8165 60.8165i −2.12770 2.12770i
\(818\) 1.46725 1.46725i 0.0513012 0.0513012i
\(819\) 0 0
\(820\) −2.37777 + 11.2633i −0.0830353 + 0.393330i
\(821\) −38.7475 −1.35230 −0.676148 0.736766i \(-0.736352\pi\)
−0.676148 + 0.736766i \(0.736352\pi\)
\(822\) 0.263241 + 0.263241i 0.00918159 + 0.00918159i
\(823\) −34.8021 34.8021i −1.21312 1.21312i −0.969993 0.243131i \(-0.921825\pi\)
−0.243131 0.969993i \(-0.578175\pi\)
\(824\) 16.7331 0.582924
\(825\) −13.9044 + 5.38166i −0.484088 + 0.187365i
\(826\) 0 0
\(827\) 13.1555 13.1555i 0.457462 0.457462i −0.440360 0.897821i \(-0.645149\pi\)
0.897821 + 0.440360i \(0.145149\pi\)
\(828\) −1.36811 1.36811i −0.0475451 0.0475451i
\(829\) −15.3802 −0.534175 −0.267087 0.963672i \(-0.586061\pi\)
−0.267087 + 0.963672i \(0.586061\pi\)
\(830\) 25.1063 + 5.30014i 0.871451 + 0.183971i
\(831\) 29.1838i 1.01237i
\(832\) −0.960607 0.960607i −0.0333031 0.0333031i
\(833\) 0 0
\(834\) 16.1794i 0.560246i
\(835\) 16.8061 10.9471i 0.581599 0.378842i
\(836\) 25.8561i 0.894252i
\(837\) 0.126767 0.126767i 0.00438170 0.00438170i
\(838\) 9.15053 9.15053i 0.316100 0.316100i
\(839\) 33.7835 1.16634 0.583168 0.812352i \(-0.301813\pi\)
0.583168 + 0.812352i \(0.301813\pi\)
\(840\) 0 0
\(841\) 24.9705 0.861053
\(842\) −4.83195 + 4.83195i −0.166520 + 0.166520i
\(843\) 1.89257 1.89257i 0.0651837 0.0651837i
\(844\) 2.04533i 0.0704031i
\(845\) 24.4043 + 5.15194i 0.839532 + 0.177232i
\(846\) 0.285791i 0.00982570i
\(847\) 0 0
\(848\) 7.01726 + 7.01726i 0.240974 + 0.240974i
\(849\) 13.1264i 0.450497i
\(850\) −10.5266 4.65182i −0.361059 0.159556i
\(851\) −13.3156 −0.456455
\(852\) −6.42398 6.42398i −0.220082 0.220082i
\(853\) 31.2527 31.2527i 1.07007 1.07007i 0.0727187 0.997352i \(-0.476832\pi\)
0.997352 0.0727187i \(-0.0231675\pi\)
\(854\) 0 0
\(855\) −18.9709 4.00490i −0.648789 0.136965i
\(856\) −13.7547 −0.470126
\(857\) 12.0706 + 12.0706i 0.412323 + 0.412323i 0.882547 0.470224i \(-0.155827\pi\)
−0.470224 + 0.882547i \(0.655827\pi\)
\(858\) −2.86444 2.86444i −0.0977903 0.0977903i
\(859\) 21.5661 0.735826 0.367913 0.929860i \(-0.380072\pi\)
0.367913 + 0.929860i \(0.380072\pi\)
\(860\) 12.1056 + 18.5845i 0.412797 + 0.633727i
\(861\) 0 0
\(862\) −10.3937 + 10.3937i −0.354012 + 0.354012i
\(863\) 11.6912 + 11.6912i 0.397973 + 0.397973i 0.877518 0.479544i \(-0.159198\pi\)
−0.479544 + 0.877518i \(0.659198\pi\)
\(864\) 1.00000 0.0340207
\(865\) 24.0898 + 36.9828i 0.819079 + 1.25745i
\(866\) 5.50045i 0.186913i
\(867\) 8.27460 + 8.27460i 0.281020 + 0.281020i
\(868\) 0 0
\(869\) 48.5319i 1.64633i
\(870\) −0.927140 + 4.39178i −0.0314330 + 0.148895i
\(871\) 12.0851i 0.409489i
\(872\) −3.22879 + 3.22879i −0.109341 + 0.109341i
\(873\) 7.44633 7.44633i 0.252020 0.252020i
\(874\) −16.7767 −0.567479
\(875\) 0 0
\(876\) −12.4187 −0.419588
\(877\) −17.8666 + 17.8666i −0.603312 + 0.603312i −0.941190 0.337878i \(-0.890291\pi\)
0.337878 + 0.941190i \(0.390291\pi\)
\(878\) −24.1614 + 24.1614i −0.815407 + 0.815407i
\(879\) 6.11241i 0.206166i
\(880\) 1.37726 6.52395i 0.0464274 0.219922i
\(881\) 0.521687i 0.0175761i 0.999961 + 0.00878804i \(0.00279736\pi\)
−0.999961 + 0.00878804i \(0.997203\pi\)
\(882\) 0 0
\(883\) −17.5835 17.5835i −0.591732 0.591732i 0.346367 0.938099i \(-0.387415\pi\)
−0.938099 + 0.346367i \(0.887415\pi\)
\(884\) 3.12691i 0.105169i
\(885\) −8.65344 13.2848i −0.290882 0.446563i
\(886\) 5.09627 0.171213
\(887\) 26.5408 + 26.5408i 0.891153 + 0.891153i 0.994632 0.103479i \(-0.0329974\pi\)
−0.103479 + 0.994632i \(0.532997\pi\)
\(888\) 4.86644 4.86644i 0.163307 0.163307i
\(889\) 0 0
\(890\) −15.0160 23.0526i −0.503338 0.772725i
\(891\) 2.98190 0.0998975
\(892\) −1.00154 1.00154i −0.0335340 0.0335340i
\(893\) 1.75228 + 1.75228i 0.0586378 + 0.0586378i
\(894\) −4.69989 −0.157188
\(895\) −17.5183 3.69825i −0.585571 0.123619i
\(896\) 0 0
\(897\) 1.85858 1.85858i 0.0620562 0.0620562i
\(898\) −21.4746 21.4746i −0.716616 0.716616i
\(899\) −0.359868 −0.0120023
\(900\) 4.57335 + 2.02101i 0.152445 + 0.0673671i
\(901\) 22.8421i 0.760981i
\(902\) −10.8549 10.8549i −0.361429 0.361429i
\(903\) 0 0
\(904\) 16.2559i 0.540663i
\(905\) −2.16778 0.457637i −0.0720595 0.0152124i
\(906\) 8.11372i 0.269560i
\(907\) −27.0193 + 27.0193i −0.897160 + 0.897160i −0.995184 0.0980241i \(-0.968748\pi\)
0.0980241 + 0.995184i \(0.468748\pi\)
\(908\) −5.86104 + 5.86104i −0.194505 + 0.194505i
\(909\) −13.0344 −0.432325
\(910\) 0 0
\(911\) 7.44947 0.246812 0.123406 0.992356i \(-0.460618\pi\)
0.123406 + 0.992356i \(0.460618\pi\)
\(912\) 6.13133 6.13133i 0.203029 0.203029i
\(913\) −24.1960 + 24.1960i −0.800771 + 0.800771i
\(914\) 8.72210i 0.288501i
\(915\) 4.52886 2.95001i 0.149719 0.0975242i
\(916\) 16.9122i 0.558796i
\(917\) 0 0
\(918\) 1.62757 + 1.62757i 0.0537177 + 0.0537177i
\(919\) 18.4266i 0.607836i 0.952698 + 0.303918i \(0.0982949\pi\)
−0.952698 + 0.303918i \(0.901705\pi\)
\(920\) 4.23304 + 0.893630i 0.139559 + 0.0294621i
\(921\) −1.88974 −0.0622690
\(922\) 19.3907 + 19.3907i 0.638600 + 0.638600i
\(923\) 8.72700 8.72700i 0.287253 0.287253i
\(924\) 0 0
\(925\) 32.0911 12.4208i 1.05515 0.408393i
\(926\) 24.1712 0.794315
\(927\) −11.8321 11.8321i −0.388616 0.388616i
\(928\) −1.41941 1.41941i −0.0465945 0.0465945i
\(929\) 48.3933 1.58773 0.793867 0.608092i \(-0.208065\pi\)
0.793867 + 0.608092i \(0.208065\pi\)
\(930\) −0.0828022 + 0.392226i −0.00271519 + 0.0128616i
\(931\) 0 0
\(932\) 7.30362 7.30362i 0.239238 0.239238i
\(933\) 9.82751 + 9.82751i 0.321738 + 0.321738i
\(934\) −15.8689 −0.519245
\(935\) 12.8597 8.37657i 0.420558 0.273943i
\(936\) 1.35850i 0.0444041i
\(937\) −4.99590 4.99590i −0.163209 0.163209i 0.620778 0.783987i \(-0.286817\pi\)
−0.783987 + 0.620778i \(0.786817\pi\)
\(938\) 0 0
\(939\) 4.23639i 0.138249i
\(940\) −0.348793 0.535468i −0.0113764 0.0174650i
\(941\) 10.9082i 0.355598i −0.984067 0.177799i \(-0.943102\pi\)
0.984067 0.177799i \(-0.0568976\pi\)
\(942\) 6.77980 6.77980i 0.220898 0.220898i
\(943\) 7.04317 7.04317i 0.229357 0.229357i
\(944\) 7.09038 0.230772
\(945\) 0 0
\(946\) −29.5774 −0.961644
\(947\) 4.37732 4.37732i 0.142244 0.142244i −0.632399 0.774643i \(-0.717930\pi\)
0.774643 + 0.632399i \(0.217930\pi\)
\(948\) 11.5085 11.5085i 0.373779 0.373779i
\(949\) 16.8708i 0.547650i
\(950\) 40.4322 15.6492i 1.31179 0.507728i
\(951\) 31.6087i 1.02498i
\(952\) 0 0
\(953\) −6.54107 6.54107i −0.211886 0.211886i 0.593182 0.805068i \(-0.297871\pi\)
−0.805068 + 0.593182i \(0.797871\pi\)
\(954\) 9.92390i 0.321298i
\(955\) −1.37811 + 6.52797i −0.0445946 + 0.211240i
\(956\) 0.400370 0.0129489
\(957\) −4.23255 4.23255i −0.136819 0.136819i
\(958\) 0.0311150 0.0311150i 0.00100528 0.00100528i
\(959\) 0 0
\(960\) −1.87363 + 1.22045i −0.0604713 + 0.0393898i
\(961\) 30.9679 0.998963
\(962\) 6.61109 + 6.61109i 0.213150 + 0.213150i
\(963\) 9.72604 + 9.72604i 0.313417 + 0.313417i
\(964\) −25.1974 −0.811553
\(965\) 29.4873 19.2074i 0.949230 0.618309i
\(966\) 0 0
\(967\) −35.8084 + 35.8084i −1.15152 + 1.15152i −0.165272 + 0.986248i \(0.552850\pi\)
−0.986248 + 0.165272i \(0.947150\pi\)
\(968\) −1.49076 1.49076i −0.0479150 0.0479150i
\(969\) 19.9583 0.641153
\(970\) −4.86384 + 23.0395i −0.156168 + 0.739755i
\(971\) 10.0030i 0.321011i −0.987035 0.160505i \(-0.948688\pi\)
0.987035 0.160505i \(-0.0513124\pi\)
\(972\) −0.707107 0.707107i −0.0226805 0.0226805i
\(973\) 0 0
\(974\) 31.3116i 1.00329i
\(975\) −2.74555 + 6.21291i −0.0879281 + 0.198972i
\(976\) 2.41715i 0.0773711i
\(977\) 30.0543 30.0543i 0.961521 0.961521i −0.0377658 0.999287i \(-0.512024\pi\)
0.999287 + 0.0377658i \(0.0120241\pi\)
\(978\) −4.53943 + 4.53943i −0.145155 + 0.145155i
\(979\) 36.6884 1.17257
\(980\) 0 0
\(981\) 4.56620 0.145788
\(982\) −17.5385 + 17.5385i −0.559675 + 0.559675i
\(983\) −5.35375 + 5.35375i −0.170758 + 0.170758i −0.787312 0.616554i \(-0.788528\pi\)
0.616554 + 0.787312i \(0.288528\pi\)
\(984\) 5.14811i 0.164116i
\(985\) −32.3534 49.6690i −1.03087 1.58259i
\(986\) 4.62037i 0.147143i
\(987\) 0 0
\(988\) 8.32944 + 8.32944i 0.264995 + 0.264995i
\(989\) 19.1912i 0.610245i
\(990\) −5.58699 + 3.63926i −0.177566 + 0.115663i
\(991\) −22.1160 −0.702538 −0.351269 0.936274i \(-0.614250\pi\)
−0.351269 + 0.936274i \(0.614250\pi\)
\(992\) −0.126767 0.126767i −0.00402485 0.00402485i
\(993\) −20.5805 + 20.5805i −0.653103 + 0.653103i
\(994\) 0 0
\(995\) −5.78654 + 27.4103i −0.183446 + 0.868965i
\(996\) 11.4753 0.363610
\(997\) −16.4225 16.4225i −0.520107 0.520107i 0.397497 0.917604i \(-0.369879\pi\)
−0.917604 + 0.397497i \(0.869879\pi\)
\(998\) 23.3815 + 23.3815i 0.740129 + 0.740129i
\(999\) −6.88219 −0.217743
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1470.2.m.c.1273.3 yes 16
5.2 odd 4 1470.2.m.f.97.2 yes 16
7.6 odd 2 1470.2.m.f.1273.2 yes 16
35.27 even 4 inner 1470.2.m.c.97.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1470.2.m.c.97.3 16 35.27 even 4 inner
1470.2.m.c.1273.3 yes 16 1.1 even 1 trivial
1470.2.m.f.97.2 yes 16 5.2 odd 4
1470.2.m.f.1273.2 yes 16 7.6 odd 2