L(s) = 1 | + (−0.707 − 0.707i)2-s + (−0.707 − 0.707i)3-s + 1.00i·4-s + (1.49 − 1.66i)5-s + 1.00i·6-s + (0.707 − 0.707i)8-s + 1.00i·9-s + (−2.23 + 0.122i)10-s − 0.520·11-s + (0.707 − 0.707i)12-s + (2.39 + 2.39i)13-s + (−2.23 + 0.122i)15-s − 1.00·16-s + (−0.110 + 0.110i)17-s + (0.707 − 0.707i)18-s + 6.73·19-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + (−0.408 − 0.408i)3-s + 0.500i·4-s + (0.667 − 0.744i)5-s + 0.408i·6-s + (0.250 − 0.250i)8-s + 0.333i·9-s + (−0.706 + 0.0386i)10-s − 0.156·11-s + (0.204 − 0.204i)12-s + (0.663 + 0.663i)13-s + (−0.576 + 0.0315i)15-s − 0.250·16-s + (−0.0267 + 0.0267i)17-s + (0.166 − 0.166i)18-s + 1.54·19-s + ⋯ |
Λ(s)=(=(1470s/2ΓC(s)L(s)(0.241+0.970i)Λ(2−s)
Λ(s)=(=(1470s/2ΓC(s+1/2)L(s)(0.241+0.970i)Λ(1−s)
Degree: |
2 |
Conductor: |
1470
= 2⋅3⋅5⋅72
|
Sign: |
0.241+0.970i
|
Analytic conductor: |
11.7380 |
Root analytic conductor: |
3.42607 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1470(97,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1470, ( :1/2), 0.241+0.970i)
|
Particular Values
L(1) |
≈ |
1.344605879 |
L(21) |
≈ |
1.344605879 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707+0.707i)T |
| 3 | 1+(0.707+0.707i)T |
| 5 | 1+(−1.49+1.66i)T |
| 7 | 1 |
good | 11 | 1+0.520T+11T2 |
| 13 | 1+(−2.39−2.39i)T+13iT2 |
| 17 | 1+(0.110−0.110i)T−17iT2 |
| 19 | 1−6.73T+19T2 |
| 23 | 1+(−0.802+0.802i)T−23iT2 |
| 29 | 1+1.20iT−29T2 |
| 31 | 1−7.18iT−31T2 |
| 37 | 1+(−4.41−4.41i)T+37iT2 |
| 41 | 1−1.23iT−41T2 |
| 43 | 1+(−6.27+6.27i)T−43iT2 |
| 47 | 1+(−7.57+7.57i)T−47iT2 |
| 53 | 1+(−0.550+0.550i)T−53iT2 |
| 59 | 1+8.93T+59T2 |
| 61 | 1−15.4iT−61T2 |
| 67 | 1+(10.4+10.4i)T+67iT2 |
| 71 | 1−3.05T+71T2 |
| 73 | 1+(−3.22−3.22i)T+73iT2 |
| 79 | 1+2.29iT−79T2 |
| 83 | 1+(3.43+3.43i)T+83iT2 |
| 89 | 1−16.3T+89T2 |
| 97 | 1+(−9.40+9.40i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.227493025379984313318968702309, −8.791375601720376044743843741833, −7.81782877740661427559745128246, −6.98737369172027260602232437211, −6.03286587829133122580757393863, −5.23394164653959110980004926051, −4.27352586600873827470183411937, −2.98048873326306024690373165462, −1.76787130691627927487316840522, −0.899025128278616773380753080078,
1.04109045073573287789850090334, 2.58377513223097753871348401518, 3.63532242155744052867296199761, 4.94314883650609559124876878215, 5.84213087499922907811070005687, 6.19810416456475013561886774745, 7.38691820930490992840648735230, 7.84667680771227923452414623968, 9.220952040674975629393224403923, 9.500932756695375498729409193733