Properties

Label 2-1470-35.27-c1-0-27
Degree $2$
Conductor $1470$
Sign $-0.112 - 0.993i$
Analytic cond. $11.7380$
Root an. cond. $3.42607$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 + 0.707i)2-s + (0.707 + 0.707i)3-s + 1.00i·4-s + (2.14 + 0.625i)5-s + 1.00i·6-s + (−0.707 + 0.707i)8-s + 1.00i·9-s + (1.07 + 1.96i)10-s + 2.07·11-s + (−0.707 + 0.707i)12-s + (−0.326 − 0.326i)13-s + (1.07 + 1.96i)15-s − 1.00·16-s + (−1.26 + 1.26i)17-s + (−0.707 + 0.707i)18-s + 4.37·19-s + ⋯
L(s)  = 1  + (0.499 + 0.499i)2-s + (0.408 + 0.408i)3-s + 0.500i·4-s + (0.960 + 0.279i)5-s + 0.408i·6-s + (−0.250 + 0.250i)8-s + 0.333i·9-s + (0.340 + 0.619i)10-s + 0.625·11-s + (−0.204 + 0.204i)12-s + (−0.0906 − 0.0906i)13-s + (0.277 + 0.506i)15-s − 0.250·16-s + (−0.307 + 0.307i)17-s + (−0.166 + 0.166i)18-s + 1.00·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.112 - 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.112 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1470\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2}\)
Sign: $-0.112 - 0.993i$
Analytic conductor: \(11.7380\)
Root analytic conductor: \(3.42607\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1470} (97, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1470,\ (\ :1/2),\ -0.112 - 0.993i)\)

Particular Values

\(L(1)\) \(\approx\) \(3.089367355\)
\(L(\frac12)\) \(\approx\) \(3.089367355\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.707 - 0.707i)T \)
3 \( 1 + (-0.707 - 0.707i)T \)
5 \( 1 + (-2.14 - 0.625i)T \)
7 \( 1 \)
good11 \( 1 - 2.07T + 11T^{2} \)
13 \( 1 + (0.326 + 0.326i)T + 13iT^{2} \)
17 \( 1 + (1.26 - 1.26i)T - 17iT^{2} \)
19 \( 1 - 4.37T + 19T^{2} \)
23 \( 1 + (-0.635 + 0.635i)T - 23iT^{2} \)
29 \( 1 + 0.0288iT - 29T^{2} \)
31 \( 1 - 8.03iT - 31T^{2} \)
37 \( 1 + (8.07 + 8.07i)T + 37iT^{2} \)
41 \( 1 - 10.6iT - 41T^{2} \)
43 \( 1 + (-2.50 + 2.50i)T - 43iT^{2} \)
47 \( 1 + (0.525 - 0.525i)T - 47iT^{2} \)
53 \( 1 + (-7.22 + 7.22i)T - 53iT^{2} \)
59 \( 1 + 13.4T + 59T^{2} \)
61 \( 1 + 9.84iT - 61T^{2} \)
67 \( 1 + (3.33 + 3.33i)T + 67iT^{2} \)
71 \( 1 - 2.27T + 71T^{2} \)
73 \( 1 + (-8.14 - 8.14i)T + 73iT^{2} \)
79 \( 1 + 8.01iT - 79T^{2} \)
83 \( 1 + (-4.26 - 4.26i)T + 83iT^{2} \)
89 \( 1 + 0.0197T + 89T^{2} \)
97 \( 1 + (5.65 - 5.65i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.527124602525643416067904109427, −9.019356539462861261111259110896, −8.127373360425713957528790355315, −7.09776817871288330377112189110, −6.48346043833477438474682014351, −5.51418490620302278032146288054, −4.85628310214992640960753412337, −3.70259560213253441445298947157, −2.90247797663162993361259649057, −1.67906361394002912750422403207, 1.08986162554754029698472182176, 2.08325920384585867080373852967, 3.01917837625439411689405690333, 4.10733616053532646661925610449, 5.13156844877534222792469494364, 5.91995362619103060403560670795, 6.73928073527114198384043037334, 7.58956717137292342094399296712, 8.803299635644904553964835911768, 9.294921064168835868287563984562

Graph of the $Z$-function along the critical line