L(s) = 1 | + (0.707 + 0.707i)2-s + (0.707 + 0.707i)3-s + 1.00i·4-s + (2.14 + 0.625i)5-s + 1.00i·6-s + (−0.707 + 0.707i)8-s + 1.00i·9-s + (1.07 + 1.96i)10-s + 2.07·11-s + (−0.707 + 0.707i)12-s + (−0.326 − 0.326i)13-s + (1.07 + 1.96i)15-s − 1.00·16-s + (−1.26 + 1.26i)17-s + (−0.707 + 0.707i)18-s + 4.37·19-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + (0.408 + 0.408i)3-s + 0.500i·4-s + (0.960 + 0.279i)5-s + 0.408i·6-s + (−0.250 + 0.250i)8-s + 0.333i·9-s + (0.340 + 0.619i)10-s + 0.625·11-s + (−0.204 + 0.204i)12-s + (−0.0906 − 0.0906i)13-s + (0.277 + 0.506i)15-s − 0.250·16-s + (−0.307 + 0.307i)17-s + (−0.166 + 0.166i)18-s + 1.00·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.112 - 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.112 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.089367355\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.089367355\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 + (-2.14 - 0.625i)T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 - 2.07T + 11T^{2} \) |
| 13 | \( 1 + (0.326 + 0.326i)T + 13iT^{2} \) |
| 17 | \( 1 + (1.26 - 1.26i)T - 17iT^{2} \) |
| 19 | \( 1 - 4.37T + 19T^{2} \) |
| 23 | \( 1 + (-0.635 + 0.635i)T - 23iT^{2} \) |
| 29 | \( 1 + 0.0288iT - 29T^{2} \) |
| 31 | \( 1 - 8.03iT - 31T^{2} \) |
| 37 | \( 1 + (8.07 + 8.07i)T + 37iT^{2} \) |
| 41 | \( 1 - 10.6iT - 41T^{2} \) |
| 43 | \( 1 + (-2.50 + 2.50i)T - 43iT^{2} \) |
| 47 | \( 1 + (0.525 - 0.525i)T - 47iT^{2} \) |
| 53 | \( 1 + (-7.22 + 7.22i)T - 53iT^{2} \) |
| 59 | \( 1 + 13.4T + 59T^{2} \) |
| 61 | \( 1 + 9.84iT - 61T^{2} \) |
| 67 | \( 1 + (3.33 + 3.33i)T + 67iT^{2} \) |
| 71 | \( 1 - 2.27T + 71T^{2} \) |
| 73 | \( 1 + (-8.14 - 8.14i)T + 73iT^{2} \) |
| 79 | \( 1 + 8.01iT - 79T^{2} \) |
| 83 | \( 1 + (-4.26 - 4.26i)T + 83iT^{2} \) |
| 89 | \( 1 + 0.0197T + 89T^{2} \) |
| 97 | \( 1 + (5.65 - 5.65i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.527124602525643416067904109427, −9.019356539462861261111259110896, −8.127373360425713957528790355315, −7.09776817871288330377112189110, −6.48346043833477438474682014351, −5.51418490620302278032146288054, −4.85628310214992640960753412337, −3.70259560213253441445298947157, −2.90247797663162993361259649057, −1.67906361394002912750422403207,
1.08986162554754029698472182176, 2.08325920384585867080373852967, 3.01917837625439411689405690333, 4.10733616053532646661925610449, 5.13156844877534222792469494364, 5.91995362619103060403560670795, 6.73928073527114198384043037334, 7.58956717137292342094399296712, 8.803299635644904553964835911768, 9.294921064168835868287563984562