Properties

Label 8-1470e4-1.1-c1e4-0-5
Degree 88
Conductor 4.669×10124.669\times 10^{12}
Sign 11
Analytic cond. 18983.518983.5
Root an. cond. 3.426073.42607
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 4·5-s + 9-s + 10·11-s − 14·19-s + 4·20-s + 5·25-s − 12·31-s + 36-s + 36·41-s + 10·44-s + 4·45-s + 40·55-s − 8·59-s − 4·61-s − 64-s − 8·71-s − 14·76-s − 28·79-s − 20·89-s − 56·95-s + 10·99-s + 5·100-s + 16·101-s − 36·109-s + 47·121-s − 12·124-s + ⋯
L(s)  = 1  + 1/2·4-s + 1.78·5-s + 1/3·9-s + 3.01·11-s − 3.21·19-s + 0.894·20-s + 25-s − 2.15·31-s + 1/6·36-s + 5.62·41-s + 1.50·44-s + 0.596·45-s + 5.39·55-s − 1.04·59-s − 0.512·61-s − 1/8·64-s − 0.949·71-s − 1.60·76-s − 3.15·79-s − 2.11·89-s − 5.74·95-s + 1.00·99-s + 1/2·100-s + 1.59·101-s − 3.44·109-s + 4.27·121-s − 1.07·124-s + ⋯

Functional equation

Λ(s)=((24345478)s/2ΓC(s)4L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
Λ(s)=((24345478)s/2ΓC(s+1/2)4L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 88
Conductor: 243454782^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}
Sign: 11
Analytic conductor: 18983.518983.5
Root analytic conductor: 3.426073.42607
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (8, 24345478, ( :1/2,1/2,1/2,1/2), 1)(8,\ 2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )

Particular Values

L(1)L(1) \approx 4.8365926474.836592647
L(12)L(\frac12) \approx 4.8365926474.836592647
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2C22C_2^2 1T2+T4 1 - T^{2} + T^{4}
3C22C_2^2 1T2+T4 1 - T^{2} + T^{4}
5C22C_2^2 14T+11T24pT3+p2T4 1 - 4 T + 11 T^{2} - 4 p T^{3} + p^{2} T^{4}
7 1 1
good11C22C_2^2 (15T+14T25pT3+p2T4)2 ( 1 - 5 T + 14 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{2}
13C22C_2^2 (125T2+p2T4)2 ( 1 - 25 T^{2} + p^{2} T^{4} )^{2}
17C22C_2^2×\timesC22C_2^2 (18T+47T28pT3+p2T4)(1+8T+47T2+8pT3+p2T4) ( 1 - 8 T + 47 T^{2} - 8 p T^{3} + p^{2} T^{4} )( 1 + 8 T + 47 T^{2} + 8 p T^{3} + p^{2} T^{4} )
19C2C_2 (1T+pT2)2(1+8T+pT2)2 ( 1 - T + p T^{2} )^{2}( 1 + 8 T + p T^{2} )^{2}
23C23C_2^3 1+37T2+840T4+37p2T6+p4T8 1 + 37 T^{2} + 840 T^{4} + 37 p^{2} T^{6} + p^{4} T^{8}
29C2C_2 (1+pT2)4 ( 1 + p T^{2} )^{4}
31C22C_2^2 (1+6T+5T2+6pT3+p2T4)2 ( 1 + 6 T + 5 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2}
37C23C_2^3 1+49T2+1032T4+49p2T6+p4T8 1 + 49 T^{2} + 1032 T^{4} + 49 p^{2} T^{6} + p^{4} T^{8}
41C2C_2 (19T+pT2)4 ( 1 - 9 T + p T^{2} )^{4}
43C22C_2^2 (1+14T2+p2T4)2 ( 1 + 14 T^{2} + p^{2} T^{4} )^{2}
47C23C_2^3 175T2+3416T475p2T6+p4T8 1 - 75 T^{2} + 3416 T^{4} - 75 p^{2} T^{6} + p^{4} T^{8}
53C23C_2^3 1+105T2+8216T4+105p2T6+p4T8 1 + 105 T^{2} + 8216 T^{4} + 105 p^{2} T^{6} + p^{4} T^{8}
59C22C_2^2 (1+4T43T2+4pT3+p2T4)2 ( 1 + 4 T - 43 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2}
61C22C_2^2 (1+2T57T2+2pT3+p2T4)2 ( 1 + 2 T - 57 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2}
67C23C_2^3 1+98T2+5115T4+98p2T6+p4T8 1 + 98 T^{2} + 5115 T^{4} + 98 p^{2} T^{6} + p^{4} T^{8}
71C2C_2 (1+2T+pT2)4 ( 1 + 2 T + p T^{2} )^{4}
73C23C_2^3 1+130T2+11571T4+130p2T6+p4T8 1 + 130 T^{2} + 11571 T^{4} + 130 p^{2} T^{6} + p^{4} T^{8}
79C22C_2^2 (1+14T+117T2+14pT3+p2T4)2 ( 1 + 14 T + 117 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2}
83C22C_2^2 (166T2+p2T4)2 ( 1 - 66 T^{2} + p^{2} T^{4} )^{2}
89C22C_2^2 (1+10T+11T2+10pT3+p2T4)2 ( 1 + 10 T + 11 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2}
97C2C_2 (118T+pT2)2(1+18T+pT2)2 ( 1 - 18 T + p T^{2} )^{2}( 1 + 18 T + p T^{2} )^{2}
show more
show less
   L(s)=p j=18(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−6.70961437116929632648492208728, −6.35626794314856406408041272069, −6.29448405768742356315335945177, −6.24123521958903892584338073862, −6.17206546255510874341110078811, −5.62939234406027827604453509770, −5.57220493575768833728711896508, −5.46874296862761588396016630138, −5.25479737088151368307019615635, −4.48580288724954478520821387002, −4.31376024040273172655938024966, −4.25250627929462847079527339121, −4.25231144002982700438526931217, −4.06546125420022607425354934876, −3.73455847310880372740679756228, −3.17778809265516785632724721791, −3.07274155075159331636336727263, −2.64420450594449491502242355548, −2.31797635134604043994652416418, −2.22934482189743452760916840784, −1.90965459849557283694028087086, −1.55372784150797293839212904482, −1.25883331463203513692296584288, −1.25792023263463398658579996005, −0.35103269051662378624537017799, 0.35103269051662378624537017799, 1.25792023263463398658579996005, 1.25883331463203513692296584288, 1.55372784150797293839212904482, 1.90965459849557283694028087086, 2.22934482189743452760916840784, 2.31797635134604043994652416418, 2.64420450594449491502242355548, 3.07274155075159331636336727263, 3.17778809265516785632724721791, 3.73455847310880372740679756228, 4.06546125420022607425354934876, 4.25231144002982700438526931217, 4.25250627929462847079527339121, 4.31376024040273172655938024966, 4.48580288724954478520821387002, 5.25479737088151368307019615635, 5.46874296862761588396016630138, 5.57220493575768833728711896508, 5.62939234406027827604453509770, 6.17206546255510874341110078811, 6.24123521958903892584338073862, 6.29448405768742356315335945177, 6.35626794314856406408041272069, 6.70961437116929632648492208728

Graph of the ZZ-function along the critical line