Properties

Label 1470.2.n.i
Level 14701470
Weight 22
Character orbit 1470.n
Analytic conductor 11.73811.738
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1470,2,Mod(79,1470)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1470, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1470.79");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1470=23572 1470 = 2 \cdot 3 \cdot 5 \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1470.n (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 11.738009097111.7380090971
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ123+ζ12)q2+ζ12q3+(ζ122+1)q4+(ζ123+2ζ122+ζ12)q5+q6ζ123q8+ζ122q9++5q99+O(q100) q + ( - \zeta_{12}^{3} + \zeta_{12}) q^{2} + \zeta_{12} q^{3} + ( - \zeta_{12}^{2} + 1) q^{4} + ( - \zeta_{12}^{3} + 2 \zeta_{12}^{2} + \zeta_{12}) q^{5} + q^{6} - \zeta_{12}^{3} q^{8} + \zeta_{12}^{2} q^{9} + \cdots + 5 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q4+4q5+4q6+2q9+2q10+10q11+4q152q1614q19+8q20+2q246q252q26+4q3012q31+8q34+4q36+2q392q40++20q99+O(q100) 4 q + 2 q^{4} + 4 q^{5} + 4 q^{6} + 2 q^{9} + 2 q^{10} + 10 q^{11} + 4 q^{15} - 2 q^{16} - 14 q^{19} + 8 q^{20} + 2 q^{24} - 6 q^{25} - 2 q^{26} + 4 q^{30} - 12 q^{31} + 8 q^{34} + 4 q^{36} + 2 q^{39} - 2 q^{40}+ \cdots + 20 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1470Z)×\left(\mathbb{Z}/1470\mathbb{Z}\right)^\times.

nn 491491 10811081 11771177
χ(n)\chi(n) 11 ζ122-\zeta_{12}^{2} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
79.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i −0.866025 + 0.500000i 0.500000 + 0.866025i 0.133975 2.23205i 1.00000 0 1.00000i 0.500000 0.866025i −1.23205 + 1.86603i
79.2 0.866025 + 0.500000i 0.866025 0.500000i 0.500000 + 0.866025i 1.86603 1.23205i 1.00000 0 1.00000i 0.500000 0.866025i 2.23205 0.133975i
949.1 −0.866025 + 0.500000i −0.866025 0.500000i 0.500000 0.866025i 0.133975 + 2.23205i 1.00000 0 1.00000i 0.500000 + 0.866025i −1.23205 1.86603i
949.2 0.866025 0.500000i 0.866025 + 0.500000i 0.500000 0.866025i 1.86603 + 1.23205i 1.00000 0 1.00000i 0.500000 + 0.866025i 2.23205 + 0.133975i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
7.c even 3 1 inner
35.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1470.2.n.i 4
5.b even 2 1 inner 1470.2.n.i 4
7.b odd 2 1 210.2.n.a 4
7.c even 3 1 1470.2.g.a 2
7.c even 3 1 inner 1470.2.n.i 4
7.d odd 6 1 210.2.n.a 4
7.d odd 6 1 1470.2.g.f 2
21.c even 2 1 630.2.u.c 4
21.g even 6 1 630.2.u.c 4
28.d even 2 1 1680.2.di.a 4
28.f even 6 1 1680.2.di.a 4
35.c odd 2 1 210.2.n.a 4
35.f even 4 1 1050.2.i.f 2
35.f even 4 1 1050.2.i.o 2
35.i odd 6 1 210.2.n.a 4
35.i odd 6 1 1470.2.g.f 2
35.j even 6 1 1470.2.g.a 2
35.j even 6 1 inner 1470.2.n.i 4
35.k even 12 1 1050.2.i.f 2
35.k even 12 1 1050.2.i.o 2
35.k even 12 1 7350.2.a.t 1
35.k even 12 1 7350.2.a.bn 1
35.l odd 12 1 7350.2.a.b 1
35.l odd 12 1 7350.2.a.ch 1
105.g even 2 1 630.2.u.c 4
105.p even 6 1 630.2.u.c 4
140.c even 2 1 1680.2.di.a 4
140.s even 6 1 1680.2.di.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.n.a 4 7.b odd 2 1
210.2.n.a 4 7.d odd 6 1
210.2.n.a 4 35.c odd 2 1
210.2.n.a 4 35.i odd 6 1
630.2.u.c 4 21.c even 2 1
630.2.u.c 4 21.g even 6 1
630.2.u.c 4 105.g even 2 1
630.2.u.c 4 105.p even 6 1
1050.2.i.f 2 35.f even 4 1
1050.2.i.f 2 35.k even 12 1
1050.2.i.o 2 35.f even 4 1
1050.2.i.o 2 35.k even 12 1
1470.2.g.a 2 7.c even 3 1
1470.2.g.a 2 35.j even 6 1
1470.2.g.f 2 7.d odd 6 1
1470.2.g.f 2 35.i odd 6 1
1470.2.n.i 4 1.a even 1 1 trivial
1470.2.n.i 4 5.b even 2 1 inner
1470.2.n.i 4 7.c even 3 1 inner
1470.2.n.i 4 35.j even 6 1 inner
1680.2.di.a 4 28.d even 2 1
1680.2.di.a 4 28.f even 6 1
1680.2.di.a 4 140.c even 2 1
1680.2.di.a 4 140.s even 6 1
7350.2.a.b 1 35.l odd 12 1
7350.2.a.t 1 35.k even 12 1
7350.2.a.bn 1 35.k even 12 1
7350.2.a.ch 1 35.l odd 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1470,[χ])S_{2}^{\mathrm{new}}(1470, [\chi]):

T1125T11+25 T_{11}^{2} - 5T_{11} + 25 Copy content Toggle raw display
T1744T172+16 T_{17}^{4} - 4T_{17}^{2} + 16 Copy content Toggle raw display
T192+7T19+49 T_{19}^{2} + 7T_{19} + 49 Copy content Toggle raw display
T312+6T31+36 T_{31}^{2} + 6T_{31} + 36 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
33 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
55 T44T3++25 T^{4} - 4 T^{3} + \cdots + 25 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 (T25T+25)2 (T^{2} - 5 T + 25)^{2} Copy content Toggle raw display
1313 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
1717 T44T2+16 T^{4} - 4T^{2} + 16 Copy content Toggle raw display
1919 (T2+7T+49)2 (T^{2} + 7 T + 49)^{2} Copy content Toggle raw display
2323 T49T2+81 T^{4} - 9T^{2} + 81 Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 (T2+6T+36)2 (T^{2} + 6 T + 36)^{2} Copy content Toggle raw display
3737 T425T2+625 T^{4} - 25T^{2} + 625 Copy content Toggle raw display
4141 (T9)4 (T - 9)^{4} Copy content Toggle raw display
4343 (T2+100)2 (T^{2} + 100)^{2} Copy content Toggle raw display
4747 T4169T2+28561 T^{4} - 169 T^{2} + 28561 Copy content Toggle raw display
5353 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
5959 (T2+4T+16)2 (T^{2} + 4 T + 16)^{2} Copy content Toggle raw display
6161 (T2+2T+4)2 (T^{2} + 2 T + 4)^{2} Copy content Toggle raw display
6767 T436T2+1296 T^{4} - 36T^{2} + 1296 Copy content Toggle raw display
7171 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
7373 T416T2+256 T^{4} - 16T^{2} + 256 Copy content Toggle raw display
7979 (T2+14T+196)2 (T^{2} + 14 T + 196)^{2} Copy content Toggle raw display
8383 (T2+100)2 (T^{2} + 100)^{2} Copy content Toggle raw display
8989 (T2+10T+100)2 (T^{2} + 10 T + 100)^{2} Copy content Toggle raw display
9797 (T2+64)2 (T^{2} + 64)^{2} Copy content Toggle raw display
show more
show less