Properties

Label 2-150-5.4-c11-0-25
Degree $2$
Conductor $150$
Sign $-0.447 + 0.894i$
Analytic cond. $115.251$
Root an. cond. $10.7355$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 32i·2-s + 243i·3-s − 1.02e3·4-s + 7.77e3·6-s − 2.28e4i·7-s + 3.27e4i·8-s − 5.90e4·9-s − 2.59e5·11-s − 2.48e5i·12-s + 2.32e6i·13-s − 7.32e5·14-s + 1.04e6·16-s − 1.91e6i·17-s + 1.88e6i·18-s + 1.61e6·19-s + ⋯
L(s)  = 1  − 0.707i·2-s + 0.577i·3-s − 0.5·4-s + 0.408·6-s − 0.514i·7-s + 0.353i·8-s − 0.333·9-s − 0.485·11-s − 0.288i·12-s + 1.73i·13-s − 0.363·14-s + 0.250·16-s − 0.327i·17-s + 0.235i·18-s + 0.149·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(150\)    =    \(2 \cdot 3 \cdot 5^{2}\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(115.251\)
Root analytic conductor: \(10.7355\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: $\chi_{150} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 150,\ (\ :11/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(6)\) \(\approx\) \(0.9770393369\)
\(L(\frac12)\) \(\approx\) \(0.9770393369\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 32iT \)
3 \( 1 - 243iT \)
5 \( 1 \)
good7 \( 1 + 2.28e4iT - 1.97e9T^{2} \)
11 \( 1 + 2.59e5T + 2.85e11T^{2} \)
13 \( 1 - 2.32e6iT - 1.79e12T^{2} \)
17 \( 1 + 1.91e6iT - 3.42e13T^{2} \)
19 \( 1 - 1.61e6T + 1.16e14T^{2} \)
23 \( 1 + 3.28e7iT - 9.52e14T^{2} \)
29 \( 1 + 1.52e8T + 1.22e16T^{2} \)
31 \( 1 - 5.68e7T + 2.54e16T^{2} \)
37 \( 1 - 5.71e8iT - 1.77e17T^{2} \)
41 \( 1 - 7.34e8T + 5.50e17T^{2} \)
43 \( 1 - 5.80e8iT - 9.29e17T^{2} \)
47 \( 1 - 4.78e8iT - 2.47e18T^{2} \)
53 \( 1 - 2.55e9iT - 9.26e18T^{2} \)
59 \( 1 + 6.31e9T + 3.01e19T^{2} \)
61 \( 1 + 7.86e8T + 4.35e19T^{2} \)
67 \( 1 + 2.12e10iT - 1.22e20T^{2} \)
71 \( 1 - 1.17e10T + 2.31e20T^{2} \)
73 \( 1 + 2.31e10iT - 3.13e20T^{2} \)
79 \( 1 + 2.69e9T + 7.47e20T^{2} \)
83 \( 1 + 3.26e10iT - 1.28e21T^{2} \)
89 \( 1 + 7.45e10T + 2.77e21T^{2} \)
97 \( 1 - 4.14e10iT - 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.69797555932312486610429295397, −9.667033213314246941970657880204, −8.932683839057077793887698058667, −7.62342448051370260399629224700, −6.30402873712965970829093360492, −4.80629803515432952562776995863, −4.11140335934590368690688144495, −2.85925409332840448110125896097, −1.65142484813768339511589087892, −0.24977672395899526215645588755, 0.876647947984667733532553244457, 2.37964941956547015503170459583, 3.63441952347243673751893734729, 5.38920100190271280414004264041, 5.81304227427802862416677241921, 7.29800650374366369236756642225, 7.946007946919719519443538845400, 8.967622862708151168576915792643, 10.15367243743145995005632357096, 11.30019213477784306081767006106

Graph of the $Z$-function along the critical line