Properties

Label 150.12.c.g.49.1
Level $150$
Weight $12$
Character 150.49
Analytic conductor $115.251$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,12,Mod(49,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.49");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 150.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(115.251477084\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 150.49
Dual form 150.12.c.g.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-32.0000i q^{2} +243.000i q^{3} -1024.00 q^{4} +7776.00 q^{6} -22876.0i q^{7} +32768.0i q^{8} -59049.0 q^{9} -259128. q^{11} -248832. i q^{12} +2.32346e6i q^{13} -732032. q^{14} +1.04858e6 q^{16} -1.91827e6i q^{17} +1.88957e6i q^{18} +1.61374e6 q^{19} +5.55887e6 q^{21} +8.29210e6i q^{22} -3.28492e7i q^{23} -7.96262e6 q^{24} +7.43508e7 q^{26} -1.43489e7i q^{27} +2.34250e7i q^{28} -1.52590e8 q^{29} +5.68101e7 q^{31} -3.35544e7i q^{32} -6.29681e7i q^{33} -6.13845e7 q^{34} +6.04662e7 q^{36} +5.71517e8i q^{37} -5.16397e7i q^{38} -5.64601e8 q^{39} +7.34063e8 q^{41} -1.77884e8i q^{42} +5.80697e8i q^{43} +2.65347e8 q^{44} -1.05117e9 q^{46} +4.78847e8i q^{47} +2.54804e8i q^{48} +1.45402e9 q^{49} +4.66139e8 q^{51} -2.37923e9i q^{52} +2.55379e9i q^{53} -4.59165e8 q^{54} +7.49601e8 q^{56} +3.92139e8i q^{57} +4.88289e9i q^{58} -6.31792e9 q^{59} -7.86138e8 q^{61} -1.81792e9i q^{62} +1.35080e9i q^{63} -1.07374e9 q^{64} -2.01498e9 q^{66} -2.12877e10i q^{67} +1.96430e9i q^{68} +7.98236e9 q^{69} +1.17195e10 q^{71} -1.93492e9i q^{72} -2.31756e10i q^{73} +1.82886e10 q^{74} -1.65247e9 q^{76} +5.92781e9i q^{77} +1.80672e10i q^{78} -2.69897e9 q^{79} +3.48678e9 q^{81} -2.34900e10i q^{82} -3.26587e10i q^{83} -5.69228e9 q^{84} +1.85823e10 q^{86} -3.70794e10i q^{87} -8.49111e9i q^{88} -7.45563e10 q^{89} +5.31515e10 q^{91} +3.36376e10i q^{92} +1.38048e10i q^{93} +1.53231e10 q^{94} +8.15373e9 q^{96} +4.14349e10i q^{97} -4.65285e10i q^{98} +1.53012e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2048 q^{4} + 15552 q^{6} - 118098 q^{9} - 518256 q^{11} - 1464064 q^{14} + 2097152 q^{16} + 3227480 q^{19} + 11117736 q^{21} - 15925248 q^{24} + 148701568 q^{26} - 305180580 q^{29} + 113620144 q^{31}+ \cdots + 30602498544 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 32.0000i − 0.707107i
\(3\) 243.000i 0.577350i
\(4\) −1024.00 −0.500000
\(5\) 0 0
\(6\) 7776.00 0.408248
\(7\) − 22876.0i − 0.514447i −0.966352 0.257224i \(-0.917192\pi\)
0.966352 0.257224i \(-0.0828077\pi\)
\(8\) 32768.0i 0.353553i
\(9\) −59049.0 −0.333333
\(10\) 0 0
\(11\) −259128. −0.485126 −0.242563 0.970136i \(-0.577988\pi\)
−0.242563 + 0.970136i \(0.577988\pi\)
\(12\) − 248832.i − 0.288675i
\(13\) 2.32346e6i 1.73559i 0.496922 + 0.867795i \(0.334463\pi\)
−0.496922 + 0.867795i \(0.665537\pi\)
\(14\) −732032. −0.363769
\(15\) 0 0
\(16\) 1.04858e6 0.250000
\(17\) − 1.91827e6i − 0.327672i −0.986488 0.163836i \(-0.947613\pi\)
0.986488 0.163836i \(-0.0523868\pi\)
\(18\) 1.88957e6i 0.235702i
\(19\) 1.61374e6 0.149516 0.0747582 0.997202i \(-0.476182\pi\)
0.0747582 + 0.997202i \(0.476182\pi\)
\(20\) 0 0
\(21\) 5.55887e6 0.297016
\(22\) 8.29210e6i 0.343036i
\(23\) − 3.28492e7i − 1.06420i −0.846683 0.532098i \(-0.821404\pi\)
0.846683 0.532098i \(-0.178596\pi\)
\(24\) −7.96262e6 −0.204124
\(25\) 0 0
\(26\) 7.43508e7 1.22725
\(27\) − 1.43489e7i − 0.192450i
\(28\) 2.34250e7i 0.257224i
\(29\) −1.52590e8 −1.38146 −0.690729 0.723113i \(-0.742710\pi\)
−0.690729 + 0.723113i \(0.742710\pi\)
\(30\) 0 0
\(31\) 5.68101e7 0.356399 0.178199 0.983994i \(-0.442973\pi\)
0.178199 + 0.983994i \(0.442973\pi\)
\(32\) − 3.35544e7i − 0.176777i
\(33\) − 6.29681e7i − 0.280088i
\(34\) −6.13845e7 −0.231699
\(35\) 0 0
\(36\) 6.04662e7 0.166667
\(37\) 5.71517e8i 1.35494i 0.735551 + 0.677470i \(0.236924\pi\)
−0.735551 + 0.677470i \(0.763076\pi\)
\(38\) − 5.16397e7i − 0.105724i
\(39\) −5.64601e8 −1.00204
\(40\) 0 0
\(41\) 7.34063e8 0.989515 0.494757 0.869031i \(-0.335257\pi\)
0.494757 + 0.869031i \(0.335257\pi\)
\(42\) − 1.77884e8i − 0.210022i
\(43\) 5.80697e8i 0.602383i 0.953564 + 0.301192i \(0.0973844\pi\)
−0.953564 + 0.301192i \(0.902616\pi\)
\(44\) 2.65347e8 0.242563
\(45\) 0 0
\(46\) −1.05117e9 −0.752501
\(47\) 4.78847e8i 0.304550i 0.988338 + 0.152275i \(0.0486599\pi\)
−0.988338 + 0.152275i \(0.951340\pi\)
\(48\) 2.54804e8i 0.144338i
\(49\) 1.45402e9 0.735344
\(50\) 0 0
\(51\) 4.66139e8 0.189182
\(52\) − 2.37923e9i − 0.867795i
\(53\) 2.55379e9i 0.838818i 0.907797 + 0.419409i \(0.137763\pi\)
−0.907797 + 0.419409i \(0.862237\pi\)
\(54\) −4.59165e8 −0.136083
\(55\) 0 0
\(56\) 7.49601e8 0.181885
\(57\) 3.92139e8i 0.0863233i
\(58\) 4.88289e9i 0.976839i
\(59\) −6.31792e9 −1.15050 −0.575252 0.817976i \(-0.695096\pi\)
−0.575252 + 0.817976i \(0.695096\pi\)
\(60\) 0 0
\(61\) −7.86138e8 −0.119175 −0.0595874 0.998223i \(-0.518979\pi\)
−0.0595874 + 0.998223i \(0.518979\pi\)
\(62\) − 1.81792e9i − 0.252012i
\(63\) 1.35080e9i 0.171482i
\(64\) −1.07374e9 −0.125000
\(65\) 0 0
\(66\) −2.01498e9 −0.198052
\(67\) − 2.12877e10i − 1.92627i −0.269020 0.963135i \(-0.586700\pi\)
0.269020 0.963135i \(-0.413300\pi\)
\(68\) 1.96430e9i 0.163836i
\(69\) 7.98236e9 0.614414
\(70\) 0 0
\(71\) 1.17195e10 0.770881 0.385441 0.922733i \(-0.374049\pi\)
0.385441 + 0.922733i \(0.374049\pi\)
\(72\) − 1.93492e9i − 0.117851i
\(73\) − 2.31756e10i − 1.30845i −0.756302 0.654223i \(-0.772996\pi\)
0.756302 0.654223i \(-0.227004\pi\)
\(74\) 1.82886e10 0.958087
\(75\) 0 0
\(76\) −1.65247e9 −0.0747582
\(77\) 5.92781e9i 0.249572i
\(78\) 1.80672e10i 0.708552i
\(79\) −2.69897e9 −0.0986845 −0.0493423 0.998782i \(-0.515713\pi\)
−0.0493423 + 0.998782i \(0.515713\pi\)
\(80\) 0 0
\(81\) 3.48678e9 0.111111
\(82\) − 2.34900e10i − 0.699692i
\(83\) − 3.26587e10i − 0.910059i −0.890476 0.455029i \(-0.849629\pi\)
0.890476 0.455029i \(-0.150371\pi\)
\(84\) −5.69228e9 −0.148508
\(85\) 0 0
\(86\) 1.85823e10 0.425949
\(87\) − 3.70794e10i − 0.797586i
\(88\) − 8.49111e9i − 0.171518i
\(89\) −7.45563e10 −1.41527 −0.707635 0.706578i \(-0.750238\pi\)
−0.707635 + 0.706578i \(0.750238\pi\)
\(90\) 0 0
\(91\) 5.31515e10 0.892870
\(92\) 3.36376e10i 0.532098i
\(93\) 1.38048e10i 0.205767i
\(94\) 1.53231e10 0.215349
\(95\) 0 0
\(96\) 8.15373e9 0.102062
\(97\) 4.14349e10i 0.489916i 0.969534 + 0.244958i \(0.0787741\pi\)
−0.969534 + 0.244958i \(0.921226\pi\)
\(98\) − 4.65285e10i − 0.519967i
\(99\) 1.53012e10 0.161709
\(100\) 0 0
\(101\) 1.16600e11 1.10391 0.551954 0.833875i \(-0.313882\pi\)
0.551954 + 0.833875i \(0.313882\pi\)
\(102\) − 1.49164e10i − 0.133772i
\(103\) − 4.30231e10i − 0.365676i −0.983143 0.182838i \(-0.941472\pi\)
0.983143 0.182838i \(-0.0585284\pi\)
\(104\) −7.61352e10 −0.613624
\(105\) 0 0
\(106\) 8.17212e10 0.593134
\(107\) − 2.15323e11i − 1.48416i −0.670313 0.742078i \(-0.733840\pi\)
0.670313 0.742078i \(-0.266160\pi\)
\(108\) 1.46933e10i 0.0962250i
\(109\) 2.56069e11 1.59409 0.797044 0.603922i \(-0.206396\pi\)
0.797044 + 0.603922i \(0.206396\pi\)
\(110\) 0 0
\(111\) −1.38879e11 −0.782275
\(112\) − 2.39872e10i − 0.128612i
\(113\) − 1.32713e11i − 0.677613i −0.940856 0.338807i \(-0.889977\pi\)
0.940856 0.338807i \(-0.110023\pi\)
\(114\) 1.25484e10 0.0610398
\(115\) 0 0
\(116\) 1.56252e11 0.690729
\(117\) − 1.37198e11i − 0.578530i
\(118\) 2.02173e11i 0.813529i
\(119\) −4.38823e10 −0.168570
\(120\) 0 0
\(121\) −2.18164e11 −0.764653
\(122\) 2.51564e10i 0.0842694i
\(123\) 1.78377e11i 0.571296i
\(124\) −5.81735e10 −0.178199
\(125\) 0 0
\(126\) 4.32258e10 0.121256
\(127\) − 5.99930e11i − 1.61132i −0.592382 0.805658i \(-0.701812\pi\)
0.592382 0.805658i \(-0.298188\pi\)
\(128\) 3.43597e10i 0.0883883i
\(129\) −1.41109e11 −0.347786
\(130\) 0 0
\(131\) −2.86450e11 −0.648719 −0.324360 0.945934i \(-0.605149\pi\)
−0.324360 + 0.945934i \(0.605149\pi\)
\(132\) 6.44793e10i 0.140044i
\(133\) − 3.69159e10i − 0.0769183i
\(134\) −6.81206e11 −1.36208
\(135\) 0 0
\(136\) 6.28577e10 0.115850
\(137\) − 2.68219e11i − 0.474817i −0.971410 0.237408i \(-0.923702\pi\)
0.971410 0.237408i \(-0.0762980\pi\)
\(138\) − 2.55435e11i − 0.434456i
\(139\) −1.00413e12 −1.64138 −0.820692 0.571371i \(-0.806412\pi\)
−0.820692 + 0.571371i \(0.806412\pi\)
\(140\) 0 0
\(141\) −1.16360e11 −0.175832
\(142\) − 3.75023e11i − 0.545095i
\(143\) − 6.02074e11i − 0.841980i
\(144\) −6.19174e10 −0.0833333
\(145\) 0 0
\(146\) −7.41620e11 −0.925211
\(147\) 3.53326e11i 0.424551i
\(148\) − 5.85234e11i − 0.677470i
\(149\) −6.60408e11 −0.736695 −0.368348 0.929688i \(-0.620076\pi\)
−0.368348 + 0.929688i \(0.620076\pi\)
\(150\) 0 0
\(151\) 1.86615e11 0.193453 0.0967263 0.995311i \(-0.469163\pi\)
0.0967263 + 0.995311i \(0.469163\pi\)
\(152\) 5.28790e10i 0.0528620i
\(153\) 1.13272e11i 0.109224i
\(154\) 1.89690e11 0.176474
\(155\) 0 0
\(156\) 5.78152e11 0.501022
\(157\) 4.52456e11i 0.378554i 0.981924 + 0.189277i \(0.0606144\pi\)
−0.981924 + 0.189277i \(0.939386\pi\)
\(158\) 8.63670e10i 0.0697805i
\(159\) −6.20570e11 −0.484292
\(160\) 0 0
\(161\) −7.51458e11 −0.547473
\(162\) − 1.11577e11i − 0.0785674i
\(163\) − 1.51667e12i − 1.03243i −0.856460 0.516213i \(-0.827341\pi\)
0.856460 0.516213i \(-0.172659\pi\)
\(164\) −7.51681e11 −0.494757
\(165\) 0 0
\(166\) −1.04508e12 −0.643509
\(167\) − 2.35061e12i − 1.40036i −0.713965 0.700181i \(-0.753103\pi\)
0.713965 0.700181i \(-0.246897\pi\)
\(168\) 1.82153e11i 0.105011i
\(169\) −3.60632e12 −2.01227
\(170\) 0 0
\(171\) −9.52897e10 −0.0498388
\(172\) − 5.94633e11i − 0.301192i
\(173\) − 9.01111e11i − 0.442104i −0.975262 0.221052i \(-0.929051\pi\)
0.975262 0.221052i \(-0.0709491\pi\)
\(174\) −1.18654e12 −0.563978
\(175\) 0 0
\(176\) −2.71715e11 −0.121282
\(177\) − 1.53525e12i − 0.664244i
\(178\) 2.38580e12i 1.00075i
\(179\) 9.77006e11 0.397379 0.198690 0.980062i \(-0.436331\pi\)
0.198690 + 0.980062i \(0.436331\pi\)
\(180\) 0 0
\(181\) 3.83020e12 1.46551 0.732756 0.680491i \(-0.238234\pi\)
0.732756 + 0.680491i \(0.238234\pi\)
\(182\) − 1.70085e12i − 0.631354i
\(183\) − 1.91032e11i − 0.0688057i
\(184\) 1.07640e12 0.376250
\(185\) 0 0
\(186\) 4.41755e11 0.145499
\(187\) 4.97076e11i 0.158962i
\(188\) − 4.90339e11i − 0.152275i
\(189\) −3.28246e11 −0.0990054
\(190\) 0 0
\(191\) −2.49694e12 −0.710764 −0.355382 0.934721i \(-0.615649\pi\)
−0.355382 + 0.934721i \(0.615649\pi\)
\(192\) − 2.60919e11i − 0.0721688i
\(193\) − 5.19794e12i − 1.39722i −0.715500 0.698612i \(-0.753801\pi\)
0.715500 0.698612i \(-0.246199\pi\)
\(194\) 1.32592e12 0.346423
\(195\) 0 0
\(196\) −1.48891e12 −0.367672
\(197\) − 5.70399e12i − 1.36967i −0.728700 0.684833i \(-0.759875\pi\)
0.728700 0.684833i \(-0.240125\pi\)
\(198\) − 4.89640e11i − 0.114345i
\(199\) 6.39817e11 0.145333 0.0726664 0.997356i \(-0.476849\pi\)
0.0726664 + 0.997356i \(0.476849\pi\)
\(200\) 0 0
\(201\) 5.17291e12 1.11213
\(202\) − 3.73122e12i − 0.780581i
\(203\) 3.49066e12i 0.710688i
\(204\) −4.77326e11 −0.0945909
\(205\) 0 0
\(206\) −1.37674e12 −0.258572
\(207\) 1.93971e12i 0.354732i
\(208\) 2.43633e12i 0.433897i
\(209\) −4.18165e11 −0.0725343
\(210\) 0 0
\(211\) 2.47025e12 0.406618 0.203309 0.979115i \(-0.434830\pi\)
0.203309 + 0.979115i \(0.434830\pi\)
\(212\) − 2.61508e12i − 0.419409i
\(213\) 2.84783e12i 0.445068i
\(214\) −6.89034e12 −1.04946
\(215\) 0 0
\(216\) 4.70185e11 0.0680414
\(217\) − 1.29959e12i − 0.183348i
\(218\) − 8.19422e12i − 1.12719i
\(219\) 5.63168e12 0.755432
\(220\) 0 0
\(221\) 4.45702e12 0.568705
\(222\) 4.44412e12i 0.553152i
\(223\) 5.26711e12i 0.639581i 0.947488 + 0.319790i \(0.103613\pi\)
−0.947488 + 0.319790i \(0.896387\pi\)
\(224\) −7.67591e11 −0.0909423
\(225\) 0 0
\(226\) −4.24682e12 −0.479145
\(227\) − 1.14447e13i − 1.26027i −0.776488 0.630133i \(-0.783001\pi\)
0.776488 0.630133i \(-0.216999\pi\)
\(228\) − 4.01550e11i − 0.0431617i
\(229\) −3.62497e12 −0.380372 −0.190186 0.981748i \(-0.560909\pi\)
−0.190186 + 0.981748i \(0.560909\pi\)
\(230\) 0 0
\(231\) −1.44046e12 −0.144090
\(232\) − 5.00008e12i − 0.488419i
\(233\) − 1.44062e13i − 1.37433i −0.726501 0.687165i \(-0.758855\pi\)
0.726501 0.687165i \(-0.241145\pi\)
\(234\) −4.39034e12 −0.409082
\(235\) 0 0
\(236\) 6.46955e12 0.575252
\(237\) − 6.55850e11i − 0.0569755i
\(238\) 1.40423e12i 0.119197i
\(239\) 1.33198e13 1.10487 0.552433 0.833557i \(-0.313699\pi\)
0.552433 + 0.833557i \(0.313699\pi\)
\(240\) 0 0
\(241\) 1.13769e13 0.901428 0.450714 0.892668i \(-0.351169\pi\)
0.450714 + 0.892668i \(0.351169\pi\)
\(242\) 6.98126e12i 0.540691i
\(243\) 8.47289e11i 0.0641500i
\(244\) 8.05005e11 0.0595874
\(245\) 0 0
\(246\) 5.70807e12 0.403968
\(247\) 3.74946e12i 0.259499i
\(248\) 1.86155e12i 0.126006i
\(249\) 7.93607e12 0.525423
\(250\) 0 0
\(251\) −2.83662e12 −0.179719 −0.0898597 0.995954i \(-0.528642\pi\)
−0.0898597 + 0.995954i \(0.528642\pi\)
\(252\) − 1.38322e12i − 0.0857412i
\(253\) 8.51215e12i 0.516269i
\(254\) −1.91978e13 −1.13937
\(255\) 0 0
\(256\) 1.09951e12 0.0625000
\(257\) 3.01443e13i 1.67715i 0.544784 + 0.838576i \(0.316612\pi\)
−0.544784 + 0.838576i \(0.683388\pi\)
\(258\) 4.51550e12i 0.245922i
\(259\) 1.30740e13 0.697045
\(260\) 0 0
\(261\) 9.01030e12 0.460486
\(262\) 9.16641e12i 0.458714i
\(263\) − 3.80917e13i − 1.86670i −0.358971 0.933349i \(-0.616872\pi\)
0.358971 0.933349i \(-0.383128\pi\)
\(264\) 2.06334e12 0.0990259
\(265\) 0 0
\(266\) −1.18131e12 −0.0543894
\(267\) − 1.81172e13i − 0.817107i
\(268\) 2.17986e13i 0.963135i
\(269\) −2.00988e12 −0.0870026 −0.0435013 0.999053i \(-0.513851\pi\)
−0.0435013 + 0.999053i \(0.513851\pi\)
\(270\) 0 0
\(271\) −3.06081e13 −1.27205 −0.636027 0.771667i \(-0.719423\pi\)
−0.636027 + 0.771667i \(0.719423\pi\)
\(272\) − 2.01145e12i − 0.0819181i
\(273\) 1.29158e13i 0.515498i
\(274\) −8.58300e12 −0.335746
\(275\) 0 0
\(276\) −8.17393e12 −0.307207
\(277\) 2.77790e13i 1.02348i 0.859142 + 0.511738i \(0.170998\pi\)
−0.859142 + 0.511738i \(0.829002\pi\)
\(278\) 3.21323e13i 1.16063i
\(279\) −3.35458e12 −0.118800
\(280\) 0 0
\(281\) −3.95175e13 −1.34557 −0.672783 0.739840i \(-0.734901\pi\)
−0.672783 + 0.739840i \(0.734901\pi\)
\(282\) 3.72351e12i 0.124332i
\(283\) 3.57563e13i 1.17092i 0.810701 + 0.585460i \(0.199086\pi\)
−0.810701 + 0.585460i \(0.800914\pi\)
\(284\) −1.20007e13 −0.385441
\(285\) 0 0
\(286\) −1.92664e13 −0.595370
\(287\) − 1.67924e13i − 0.509053i
\(288\) 1.98136e12i 0.0589256i
\(289\) 3.05922e13 0.892631
\(290\) 0 0
\(291\) −1.00687e13 −0.282853
\(292\) 2.37318e13i 0.654223i
\(293\) − 1.16731e13i − 0.315801i −0.987455 0.157901i \(-0.949527\pi\)
0.987455 0.157901i \(-0.0504726\pi\)
\(294\) 1.13064e13 0.300203
\(295\) 0 0
\(296\) −1.87275e13 −0.479043
\(297\) 3.71820e12i 0.0933625i
\(298\) 2.11331e13i 0.520922i
\(299\) 7.63239e13 1.84701
\(300\) 0 0
\(301\) 1.32840e13 0.309894
\(302\) − 5.97169e12i − 0.136792i
\(303\) 2.83339e13i 0.637342i
\(304\) 1.69213e12 0.0373791
\(305\) 0 0
\(306\) 3.62469e12 0.0772331
\(307\) 8.98114e13i 1.87962i 0.341695 + 0.939811i \(0.388999\pi\)
−0.341695 + 0.939811i \(0.611001\pi\)
\(308\) − 6.07008e12i − 0.124786i
\(309\) 1.04546e13 0.211123
\(310\) 0 0
\(311\) 6.75879e13 1.31731 0.658653 0.752446i \(-0.271126\pi\)
0.658653 + 0.752446i \(0.271126\pi\)
\(312\) − 1.85009e13i − 0.354276i
\(313\) − 9.87171e13i − 1.85737i −0.370869 0.928685i \(-0.620940\pi\)
0.370869 0.928685i \(-0.379060\pi\)
\(314\) 1.44786e13 0.267678
\(315\) 0 0
\(316\) 2.76374e12 0.0493423
\(317\) 1.10523e14i 1.93921i 0.244674 + 0.969605i \(0.421319\pi\)
−0.244674 + 0.969605i \(0.578681\pi\)
\(318\) 1.98583e13i 0.342446i
\(319\) 3.95404e13 0.670182
\(320\) 0 0
\(321\) 5.23235e13 0.856878
\(322\) 2.40467e13i 0.387122i
\(323\) − 3.09558e12i − 0.0489924i
\(324\) −3.57047e12 −0.0555556
\(325\) 0 0
\(326\) −4.85334e13 −0.730036
\(327\) 6.22249e13i 0.920347i
\(328\) 2.40538e13i 0.349846i
\(329\) 1.09541e13 0.156675
\(330\) 0 0
\(331\) −5.00155e13 −0.691912 −0.345956 0.938251i \(-0.612445\pi\)
−0.345956 + 0.938251i \(0.612445\pi\)
\(332\) 3.34425e13i 0.455029i
\(333\) − 3.37475e13i − 0.451647i
\(334\) −7.52196e13 −0.990205
\(335\) 0 0
\(336\) 5.82890e12 0.0742541
\(337\) − 3.62478e12i − 0.0454274i −0.999742 0.0227137i \(-0.992769\pi\)
0.999742 0.0227137i \(-0.00723061\pi\)
\(338\) 1.15402e14i 1.42289i
\(339\) 3.22493e13 0.391220
\(340\) 0 0
\(341\) −1.47211e13 −0.172898
\(342\) 3.04927e12i 0.0352413i
\(343\) − 7.84954e13i − 0.892743i
\(344\) −1.90283e13 −0.212975
\(345\) 0 0
\(346\) −2.88355e13 −0.312615
\(347\) 6.56058e12i 0.0700051i 0.999387 + 0.0350026i \(0.0111439\pi\)
−0.999387 + 0.0350026i \(0.988856\pi\)
\(348\) 3.79693e13i 0.398793i
\(349\) 8.14353e13 0.841924 0.420962 0.907078i \(-0.361693\pi\)
0.420962 + 0.907078i \(0.361693\pi\)
\(350\) 0 0
\(351\) 3.33391e13 0.334014
\(352\) 8.69489e12i 0.0857590i
\(353\) − 1.03792e14i − 1.00787i −0.863742 0.503934i \(-0.831885\pi\)
0.863742 0.503934i \(-0.168115\pi\)
\(354\) −4.91281e13 −0.469691
\(355\) 0 0
\(356\) 7.63457e13 0.707635
\(357\) − 1.06634e13i − 0.0973240i
\(358\) − 3.12642e13i − 0.280990i
\(359\) 1.38258e14 1.22369 0.611845 0.790978i \(-0.290428\pi\)
0.611845 + 0.790978i \(0.290428\pi\)
\(360\) 0 0
\(361\) −1.13886e14 −0.977645
\(362\) − 1.22566e14i − 1.03627i
\(363\) − 5.30139e13i − 0.441472i
\(364\) −5.44272e13 −0.446435
\(365\) 0 0
\(366\) −6.11301e12 −0.0486529
\(367\) 1.16357e14i 0.912282i 0.889908 + 0.456141i \(0.150769\pi\)
−0.889908 + 0.456141i \(0.849231\pi\)
\(368\) − 3.44449e13i − 0.266049i
\(369\) −4.33457e13 −0.329838
\(370\) 0 0
\(371\) 5.84205e13 0.431527
\(372\) − 1.41362e13i − 0.102883i
\(373\) 6.72186e13i 0.482049i 0.970519 + 0.241024i \(0.0774833\pi\)
−0.970519 + 0.241024i \(0.922517\pi\)
\(374\) 1.59064e13 0.112403
\(375\) 0 0
\(376\) −1.56908e13 −0.107675
\(377\) − 3.54538e14i − 2.39765i
\(378\) 1.05039e13i 0.0700074i
\(379\) 1.32840e14 0.872598 0.436299 0.899802i \(-0.356289\pi\)
0.436299 + 0.899802i \(0.356289\pi\)
\(380\) 0 0
\(381\) 1.45783e14 0.930293
\(382\) 7.99022e13i 0.502586i
\(383\) 2.69810e14i 1.67288i 0.548060 + 0.836439i \(0.315367\pi\)
−0.548060 + 0.836439i \(0.684633\pi\)
\(384\) −8.34942e12 −0.0510310
\(385\) 0 0
\(386\) −1.66334e14 −0.987987
\(387\) − 3.42896e13i − 0.200794i
\(388\) − 4.24293e13i − 0.244958i
\(389\) −9.81084e13 −0.558449 −0.279224 0.960226i \(-0.590077\pi\)
−0.279224 + 0.960226i \(0.590077\pi\)
\(390\) 0 0
\(391\) −6.30135e13 −0.348708
\(392\) 4.76452e13i 0.259983i
\(393\) − 6.96074e13i − 0.374538i
\(394\) −1.82528e14 −0.968500
\(395\) 0 0
\(396\) −1.56685e13 −0.0808543
\(397\) − 6.44136e13i − 0.327816i −0.986476 0.163908i \(-0.947590\pi\)
0.986476 0.163908i \(-0.0524100\pi\)
\(398\) − 2.04741e13i − 0.102766i
\(399\) 8.97057e12 0.0444088
\(400\) 0 0
\(401\) 2.05799e14 0.991172 0.495586 0.868559i \(-0.334953\pi\)
0.495586 + 0.868559i \(0.334953\pi\)
\(402\) − 1.65533e14i − 0.786396i
\(403\) 1.31996e14i 0.618562i
\(404\) −1.19399e14 −0.551954
\(405\) 0 0
\(406\) 1.11701e14 0.502532
\(407\) − 1.48096e14i − 0.657316i
\(408\) 1.52744e13i 0.0668858i
\(409\) −5.95615e13 −0.257328 −0.128664 0.991688i \(-0.541069\pi\)
−0.128664 + 0.991688i \(0.541069\pi\)
\(410\) 0 0
\(411\) 6.51772e13 0.274136
\(412\) 4.40556e13i 0.182838i
\(413\) 1.44529e14i 0.591874i
\(414\) 6.20708e13 0.250834
\(415\) 0 0
\(416\) 7.79624e13 0.306812
\(417\) − 2.44004e14i − 0.947653i
\(418\) 1.33813e13i 0.0512895i
\(419\) 8.26291e13 0.312576 0.156288 0.987712i \(-0.450047\pi\)
0.156288 + 0.987712i \(0.450047\pi\)
\(420\) 0 0
\(421\) −1.55708e14 −0.573800 −0.286900 0.957961i \(-0.592625\pi\)
−0.286900 + 0.957961i \(0.592625\pi\)
\(422\) − 7.90479e13i − 0.287523i
\(423\) − 2.82754e13i − 0.101517i
\(424\) −8.36825e13 −0.296567
\(425\) 0 0
\(426\) 9.11307e13 0.314711
\(427\) 1.79837e13i 0.0613092i
\(428\) 2.20491e14i 0.742078i
\(429\) 1.46304e14 0.486117
\(430\) 0 0
\(431\) 4.40261e14 1.42589 0.712944 0.701221i \(-0.247361\pi\)
0.712944 + 0.701221i \(0.247361\pi\)
\(432\) − 1.50459e13i − 0.0481125i
\(433\) − 3.21850e14i − 1.01618i −0.861304 0.508089i \(-0.830352\pi\)
0.861304 0.508089i \(-0.169648\pi\)
\(434\) −4.15868e13 −0.129647
\(435\) 0 0
\(436\) −2.62215e14 −0.797044
\(437\) − 5.30101e13i − 0.159115i
\(438\) − 1.80214e14i − 0.534171i
\(439\) −6.53476e14 −1.91282 −0.956411 0.292025i \(-0.905671\pi\)
−0.956411 + 0.292025i \(0.905671\pi\)
\(440\) 0 0
\(441\) −8.58582e13 −0.245115
\(442\) − 1.42625e14i − 0.402135i
\(443\) − 5.50129e14i − 1.53195i −0.642872 0.765974i \(-0.722257\pi\)
0.642872 0.765974i \(-0.277743\pi\)
\(444\) 1.42212e14 0.391137
\(445\) 0 0
\(446\) 1.68547e14 0.452252
\(447\) − 1.60479e14i − 0.425331i
\(448\) 2.45629e13i 0.0643059i
\(449\) −2.56147e13 −0.0662421 −0.0331210 0.999451i \(-0.510545\pi\)
−0.0331210 + 0.999451i \(0.510545\pi\)
\(450\) 0 0
\(451\) −1.90216e14 −0.480039
\(452\) 1.35898e14i 0.338807i
\(453\) 4.53476e13i 0.111690i
\(454\) −3.66230e14 −0.891142
\(455\) 0 0
\(456\) −1.28496e13 −0.0305199
\(457\) 1.73882e13i 0.0408052i 0.999792 + 0.0204026i \(0.00649480\pi\)
−0.999792 + 0.0204026i \(0.993505\pi\)
\(458\) 1.15999e14i 0.268964i
\(459\) −2.75250e13 −0.0630606
\(460\) 0 0
\(461\) 7.61820e14 1.70411 0.852055 0.523453i \(-0.175356\pi\)
0.852055 + 0.523453i \(0.175356\pi\)
\(462\) 4.60947e13i 0.101887i
\(463\) − 3.88545e14i − 0.848684i −0.905502 0.424342i \(-0.860505\pi\)
0.905502 0.424342i \(-0.139495\pi\)
\(464\) −1.60003e14 −0.345365
\(465\) 0 0
\(466\) −4.60998e14 −0.971799
\(467\) 1.22217e14i 0.254618i 0.991863 + 0.127309i \(0.0406340\pi\)
−0.991863 + 0.127309i \(0.959366\pi\)
\(468\) 1.40491e14i 0.289265i
\(469\) −4.86977e14 −0.990964
\(470\) 0 0
\(471\) −1.09947e14 −0.218558
\(472\) − 2.07026e14i − 0.406765i
\(473\) − 1.50475e14i − 0.292232i
\(474\) −2.09872e13 −0.0402878
\(475\) 0 0
\(476\) 4.49354e13 0.0842851
\(477\) − 1.50799e14i − 0.279606i
\(478\) − 4.26234e14i − 0.781259i
\(479\) −4.35912e14 −0.789866 −0.394933 0.918710i \(-0.629232\pi\)
−0.394933 + 0.918710i \(0.629232\pi\)
\(480\) 0 0
\(481\) −1.32790e15 −2.35162
\(482\) − 3.64061e14i − 0.637406i
\(483\) − 1.82604e14i − 0.316084i
\(484\) 2.23400e14 0.382326
\(485\) 0 0
\(486\) 2.71132e13 0.0453609
\(487\) 6.66191e14i 1.10202i 0.834499 + 0.551010i \(0.185757\pi\)
−0.834499 + 0.551010i \(0.814243\pi\)
\(488\) − 2.57602e13i − 0.0421347i
\(489\) 3.68551e14 0.596072
\(490\) 0 0
\(491\) 2.23817e13 0.0353953 0.0176976 0.999843i \(-0.494366\pi\)
0.0176976 + 0.999843i \(0.494366\pi\)
\(492\) − 1.82658e14i − 0.285648i
\(493\) 2.92709e14i 0.452666i
\(494\) 1.19983e14 0.183494
\(495\) 0 0
\(496\) 5.95697e13 0.0890997
\(497\) − 2.68095e14i − 0.396578i
\(498\) − 2.53954e14i − 0.371530i
\(499\) 4.87506e13 0.0705386 0.0352693 0.999378i \(-0.488771\pi\)
0.0352693 + 0.999378i \(0.488771\pi\)
\(500\) 0 0
\(501\) 5.71199e14 0.808499
\(502\) 9.07717e13i 0.127081i
\(503\) − 2.64333e14i − 0.366039i −0.983109 0.183019i \(-0.941413\pi\)
0.983109 0.183019i \(-0.0585871\pi\)
\(504\) −4.42632e13 −0.0606282
\(505\) 0 0
\(506\) 2.72389e14 0.365058
\(507\) − 8.76335e14i − 1.16179i
\(508\) 6.14329e14i 0.805658i
\(509\) −8.09106e13 −0.104968 −0.0524841 0.998622i \(-0.516714\pi\)
−0.0524841 + 0.998622i \(0.516714\pi\)
\(510\) 0 0
\(511\) −5.30166e14 −0.673127
\(512\) − 3.51844e13i − 0.0441942i
\(513\) − 2.31554e13i − 0.0287744i
\(514\) 9.64617e14 1.18593
\(515\) 0 0
\(516\) 1.44496e14 0.173893
\(517\) − 1.24083e14i − 0.147745i
\(518\) − 4.18369e14i − 0.492885i
\(519\) 2.18970e14 0.255249
\(520\) 0 0
\(521\) −1.10833e14 −0.126491 −0.0632456 0.997998i \(-0.520145\pi\)
−0.0632456 + 0.997998i \(0.520145\pi\)
\(522\) − 2.88330e14i − 0.325613i
\(523\) − 6.91114e14i − 0.772308i −0.922434 0.386154i \(-0.873803\pi\)
0.922434 0.386154i \(-0.126197\pi\)
\(524\) 2.93325e14 0.324360
\(525\) 0 0
\(526\) −1.21894e15 −1.31995
\(527\) − 1.08977e14i − 0.116782i
\(528\) − 6.60268e13i − 0.0700219i
\(529\) −1.26261e14 −0.132514
\(530\) 0 0
\(531\) 3.73067e14 0.383501
\(532\) 3.78019e13i 0.0384591i
\(533\) 1.70557e15i 1.71739i
\(534\) −5.79750e14 −0.577782
\(535\) 0 0
\(536\) 6.97555e14 0.681039
\(537\) 2.37412e14i 0.229427i
\(538\) 6.43161e13i 0.0615201i
\(539\) −3.76776e14 −0.356735
\(540\) 0 0
\(541\) −2.02808e15 −1.88148 −0.940741 0.339125i \(-0.889869\pi\)
−0.940741 + 0.339125i \(0.889869\pi\)
\(542\) 9.79460e14i 0.899478i
\(543\) 9.30739e14i 0.846114i
\(544\) −6.43663e13 −0.0579248
\(545\) 0 0
\(546\) 4.13306e14 0.364512
\(547\) 2.06348e15i 1.80165i 0.434180 + 0.900826i \(0.357038\pi\)
−0.434180 + 0.900826i \(0.642962\pi\)
\(548\) 2.74656e14i 0.237408i
\(549\) 4.64207e13 0.0397250
\(550\) 0 0
\(551\) −2.46241e14 −0.206551
\(552\) 2.61566e14i 0.217228i
\(553\) 6.17416e13i 0.0507680i
\(554\) 8.88927e14 0.723707
\(555\) 0 0
\(556\) 1.02823e15 0.820692
\(557\) − 2.11828e15i − 1.67409i −0.547130 0.837047i \(-0.684280\pi\)
0.547130 0.837047i \(-0.315720\pi\)
\(558\) 1.07346e14i 0.0840040i
\(559\) −1.34923e15 −1.04549
\(560\) 0 0
\(561\) −1.20790e14 −0.0917770
\(562\) 1.26456e15i 0.951458i
\(563\) 1.16211e15i 0.865870i 0.901425 + 0.432935i \(0.142522\pi\)
−0.901425 + 0.432935i \(0.857478\pi\)
\(564\) 1.19152e14 0.0879159
\(565\) 0 0
\(566\) 1.14420e15 0.827965
\(567\) − 7.97637e13i − 0.0571608i
\(568\) 3.84024e14i 0.272548i
\(569\) −1.19782e15 −0.841927 −0.420964 0.907077i \(-0.638308\pi\)
−0.420964 + 0.907077i \(0.638308\pi\)
\(570\) 0 0
\(571\) 1.46355e15 1.00904 0.504522 0.863399i \(-0.331669\pi\)
0.504522 + 0.863399i \(0.331669\pi\)
\(572\) 6.16524e14i 0.420990i
\(573\) − 6.06757e14i − 0.410360i
\(574\) −5.37358e14 −0.359955
\(575\) 0 0
\(576\) 6.34034e13 0.0416667
\(577\) 1.97111e15i 1.28305i 0.767101 + 0.641526i \(0.221698\pi\)
−0.767101 + 0.641526i \(0.778302\pi\)
\(578\) − 9.78949e14i − 0.631185i
\(579\) 1.26310e15 0.806688
\(580\) 0 0
\(581\) −7.47101e14 −0.468177
\(582\) 3.22198e14i 0.200007i
\(583\) − 6.61758e14i − 0.406932i
\(584\) 7.59419e14 0.462606
\(585\) 0 0
\(586\) −3.73539e14 −0.223305
\(587\) 3.58593e14i 0.212369i 0.994346 + 0.106185i \(0.0338635\pi\)
−0.994346 + 0.106185i \(0.966137\pi\)
\(588\) − 3.61806e14i − 0.212276i
\(589\) 9.16767e13 0.0532874
\(590\) 0 0
\(591\) 1.38607e15 0.790777
\(592\) 5.99279e14i 0.338735i
\(593\) 1.43925e15i 0.806003i 0.915199 + 0.403001i \(0.132033\pi\)
−0.915199 + 0.403001i \(0.867967\pi\)
\(594\) 1.18983e14 0.0660173
\(595\) 0 0
\(596\) 6.76258e14 0.368348
\(597\) 1.55475e14i 0.0839079i
\(598\) − 2.44236e15i − 1.30603i
\(599\) 3.41497e15 1.80942 0.904710 0.426028i \(-0.140088\pi\)
0.904710 + 0.426028i \(0.140088\pi\)
\(600\) 0 0
\(601\) 2.49987e15 1.30049 0.650245 0.759725i \(-0.274666\pi\)
0.650245 + 0.759725i \(0.274666\pi\)
\(602\) − 4.25089e14i − 0.219128i
\(603\) 1.25702e15i 0.642090i
\(604\) −1.91094e14 −0.0967263
\(605\) 0 0
\(606\) 9.06685e14 0.450669
\(607\) − 2.34097e13i − 0.0115308i −0.999983 0.00576538i \(-0.998165\pi\)
0.999983 0.00576538i \(-0.00183519\pi\)
\(608\) − 5.41481e13i − 0.0264310i
\(609\) −8.48229e14 −0.410316
\(610\) 0 0
\(611\) −1.11258e15 −0.528573
\(612\) − 1.15990e14i − 0.0546121i
\(613\) 1.82595e15i 0.852032i 0.904716 + 0.426016i \(0.140083\pi\)
−0.904716 + 0.426016i \(0.859917\pi\)
\(614\) 2.87397e15 1.32909
\(615\) 0 0
\(616\) −1.94243e14 −0.0882369
\(617\) − 9.58777e14i − 0.431667i −0.976430 0.215834i \(-0.930753\pi\)
0.976430 0.215834i \(-0.0692469\pi\)
\(618\) − 3.34548e14i − 0.149287i
\(619\) 6.16431e13 0.0272638 0.0136319 0.999907i \(-0.495661\pi\)
0.0136319 + 0.999907i \(0.495661\pi\)
\(620\) 0 0
\(621\) −4.71350e14 −0.204805
\(622\) − 2.16281e15i − 0.931477i
\(623\) 1.70555e15i 0.728082i
\(624\) −5.92027e14 −0.250511
\(625\) 0 0
\(626\) −3.15895e15 −1.31336
\(627\) − 1.01614e14i − 0.0418777i
\(628\) − 4.63315e14i − 0.189277i
\(629\) 1.09632e15 0.443976
\(630\) 0 0
\(631\) −3.38937e15 −1.34883 −0.674416 0.738352i \(-0.735604\pi\)
−0.674416 + 0.738352i \(0.735604\pi\)
\(632\) − 8.84398e13i − 0.0348902i
\(633\) 6.00270e14i 0.234761i
\(634\) 3.53672e15 1.37123
\(635\) 0 0
\(636\) 6.35464e14 0.242146
\(637\) 3.37835e15i 1.27626i
\(638\) − 1.26529e15i − 0.473890i
\(639\) −6.92024e14 −0.256960
\(640\) 0 0
\(641\) 2.53363e15 0.924749 0.462375 0.886685i \(-0.346998\pi\)
0.462375 + 0.886685i \(0.346998\pi\)
\(642\) − 1.67435e15i − 0.605904i
\(643\) 4.33651e15i 1.55589i 0.628331 + 0.777946i \(0.283739\pi\)
−0.628331 + 0.777946i \(0.716261\pi\)
\(644\) 7.69493e14 0.273736
\(645\) 0 0
\(646\) −9.90586e13 −0.0346428
\(647\) − 1.86323e15i − 0.646090i −0.946384 0.323045i \(-0.895294\pi\)
0.946384 0.323045i \(-0.104706\pi\)
\(648\) 1.14255e14i 0.0392837i
\(649\) 1.63715e15 0.558139
\(650\) 0 0
\(651\) 3.15800e14 0.105856
\(652\) 1.55307e15i 0.516213i
\(653\) − 5.87157e15i − 1.93523i −0.252440 0.967613i \(-0.581233\pi\)
0.252440 0.967613i \(-0.418767\pi\)
\(654\) 1.99120e15 0.650783
\(655\) 0 0
\(656\) 7.69721e14 0.247379
\(657\) 1.36850e15i 0.436149i
\(658\) − 3.50531e14i − 0.110786i
\(659\) 1.57270e14 0.0492920 0.0246460 0.999696i \(-0.492154\pi\)
0.0246460 + 0.999696i \(0.492154\pi\)
\(660\) 0 0
\(661\) −4.86756e15 −1.50039 −0.750193 0.661219i \(-0.770039\pi\)
−0.750193 + 0.661219i \(0.770039\pi\)
\(662\) 1.60050e15i 0.489256i
\(663\) 1.08306e15i 0.328342i
\(664\) 1.07016e15 0.321754
\(665\) 0 0
\(666\) −1.07992e15 −0.319362
\(667\) 5.01247e15i 1.47014i
\(668\) 2.40703e15i 0.700181i
\(669\) −1.27991e15 −0.369262
\(670\) 0 0
\(671\) 2.03710e14 0.0578148
\(672\) − 1.86525e14i − 0.0525056i
\(673\) 5.94031e14i 0.165854i 0.996556 + 0.0829270i \(0.0264268\pi\)
−0.996556 + 0.0829270i \(0.973573\pi\)
\(674\) −1.15993e14 −0.0321220
\(675\) 0 0
\(676\) 3.69287e15 1.00614
\(677\) 3.03615e15i 0.820513i 0.911970 + 0.410257i \(0.134561\pi\)
−0.911970 + 0.410257i \(0.865439\pi\)
\(678\) − 1.03198e15i − 0.276635i
\(679\) 9.47864e14 0.252036
\(680\) 0 0
\(681\) 2.78106e15 0.727615
\(682\) 4.71075e14i 0.122258i
\(683\) − 2.38176e15i − 0.613174i −0.951843 0.306587i \(-0.900813\pi\)
0.951843 0.306587i \(-0.0991870\pi\)
\(684\) 9.75767e13 0.0249194
\(685\) 0 0
\(686\) −2.51185e15 −0.631265
\(687\) − 8.80867e14i − 0.219608i
\(688\) 6.08905e14i 0.150596i
\(689\) −5.93363e15 −1.45584
\(690\) 0 0
\(691\) 1.02015e15 0.246339 0.123170 0.992386i \(-0.460694\pi\)
0.123170 + 0.992386i \(0.460694\pi\)
\(692\) 9.22737e14i 0.221052i
\(693\) − 3.50031e14i − 0.0831906i
\(694\) 2.09938e14 0.0495011
\(695\) 0 0
\(696\) 1.21502e15 0.281989
\(697\) − 1.40813e15i − 0.324237i
\(698\) − 2.60593e15i − 0.595330i
\(699\) 3.50070e15 0.793470
\(700\) 0 0
\(701\) −9.47724e14 −0.211462 −0.105731 0.994395i \(-0.533718\pi\)
−0.105731 + 0.994395i \(0.533718\pi\)
\(702\) − 1.06685e15i − 0.236184i
\(703\) 9.22280e14i 0.202586i
\(704\) 2.78237e14 0.0606408
\(705\) 0 0
\(706\) −3.32135e15 −0.712671
\(707\) − 2.66735e15i − 0.567902i
\(708\) 1.57210e15i 0.332122i
\(709\) −1.41385e15 −0.296380 −0.148190 0.988959i \(-0.547345\pi\)
−0.148190 + 0.988959i \(0.547345\pi\)
\(710\) 0 0
\(711\) 1.59371e14 0.0328948
\(712\) − 2.44306e15i − 0.500374i
\(713\) − 1.86617e15i − 0.379278i
\(714\) −3.41228e14 −0.0688185
\(715\) 0 0
\(716\) −1.00045e15 −0.198690
\(717\) 3.23672e15i 0.637895i
\(718\) − 4.42426e15i − 0.865280i
\(719\) −7.85082e15 −1.52372 −0.761862 0.647739i \(-0.775715\pi\)
−0.761862 + 0.647739i \(0.775715\pi\)
\(720\) 0 0
\(721\) −9.84196e14 −0.188121
\(722\) 3.64436e15i 0.691299i
\(723\) 2.76459e15i 0.520440i
\(724\) −3.92213e15 −0.732756
\(725\) 0 0
\(726\) −1.69645e15 −0.312168
\(727\) − 6.17476e15i − 1.12767i −0.825889 0.563833i \(-0.809326\pi\)
0.825889 0.563833i \(-0.190674\pi\)
\(728\) 1.74167e15i 0.315677i
\(729\) −2.05891e14 −0.0370370
\(730\) 0 0
\(731\) 1.11393e15 0.197384
\(732\) 1.95616e14i 0.0344028i
\(733\) 7.25819e15i 1.26694i 0.773767 + 0.633471i \(0.218370\pi\)
−0.773767 + 0.633471i \(0.781630\pi\)
\(734\) 3.72342e15 0.645081
\(735\) 0 0
\(736\) −1.10224e15 −0.188125
\(737\) 5.51623e15i 0.934483i
\(738\) 1.38706e15i 0.233231i
\(739\) −1.04737e16 −1.74806 −0.874030 0.485872i \(-0.838502\pi\)
−0.874030 + 0.485872i \(0.838502\pi\)
\(740\) 0 0
\(741\) −9.11120e14 −0.149822
\(742\) − 1.86945e15i − 0.305136i
\(743\) − 2.62290e15i − 0.424956i −0.977166 0.212478i \(-0.931847\pi\)
0.977166 0.212478i \(-0.0681534\pi\)
\(744\) −4.52357e14 −0.0727496
\(745\) 0 0
\(746\) 2.15099e15 0.340860
\(747\) 1.92846e15i 0.303353i
\(748\) − 5.09006e14i − 0.0794812i
\(749\) −4.92573e15 −0.763520
\(750\) 0 0
\(751\) 3.09275e15 0.472417 0.236208 0.971702i \(-0.424095\pi\)
0.236208 + 0.971702i \(0.424095\pi\)
\(752\) 5.02107e14i 0.0761374i
\(753\) − 6.89298e14i − 0.103761i
\(754\) −1.13452e16 −1.69539
\(755\) 0 0
\(756\) 3.36123e14 0.0495027
\(757\) − 5.54759e15i − 0.811105i −0.914072 0.405553i \(-0.867079\pi\)
0.914072 0.405553i \(-0.132921\pi\)
\(758\) − 4.25089e15i − 0.617020i
\(759\) −2.06845e15 −0.298068
\(760\) 0 0
\(761\) 1.79365e13 0.00254754 0.00127377 0.999999i \(-0.499595\pi\)
0.00127377 + 0.999999i \(0.499595\pi\)
\(762\) − 4.66506e15i − 0.657817i
\(763\) − 5.85784e15i − 0.820074i
\(764\) 2.55687e15 0.355382
\(765\) 0 0
\(766\) 8.63391e15 1.18290
\(767\) − 1.46794e16i − 1.99680i
\(768\) 2.67181e14i 0.0360844i
\(769\) 1.07234e16 1.43794 0.718968 0.695043i \(-0.244615\pi\)
0.718968 + 0.695043i \(0.244615\pi\)
\(770\) 0 0
\(771\) −7.32506e15 −0.968305
\(772\) 5.32269e15i 0.698612i
\(773\) − 6.56995e15i − 0.856199i −0.903732 0.428100i \(-0.859183\pi\)
0.903732 0.428100i \(-0.140817\pi\)
\(774\) −1.09727e15 −0.141983
\(775\) 0 0
\(776\) −1.35774e15 −0.173211
\(777\) 3.17699e15i 0.402439i
\(778\) 3.13947e15i 0.394883i
\(779\) 1.18459e15 0.147949
\(780\) 0 0
\(781\) −3.03685e15 −0.373975
\(782\) 2.01643e15i 0.246574i
\(783\) 2.18950e15i 0.265862i
\(784\) 1.52465e15 0.183836
\(785\) 0 0
\(786\) −2.22744e15 −0.264839
\(787\) − 1.38290e16i − 1.63279i −0.577495 0.816394i \(-0.695970\pi\)
0.577495 0.816394i \(-0.304030\pi\)
\(788\) 5.84088e15i 0.684833i
\(789\) 9.25629e15 1.07774
\(790\) 0 0
\(791\) −3.03594e15 −0.348596
\(792\) 5.01391e14i 0.0571727i
\(793\) − 1.82656e15i − 0.206839i
\(794\) −2.06124e15 −0.231801
\(795\) 0 0
\(796\) −6.55172e14 −0.0726664
\(797\) − 5.66909e15i − 0.624442i −0.950009 0.312221i \(-0.898927\pi\)
0.950009 0.312221i \(-0.101073\pi\)
\(798\) − 2.87058e14i − 0.0314018i
\(799\) 9.18555e14 0.0997925
\(800\) 0 0
\(801\) 4.40248e15 0.471757
\(802\) − 6.58557e15i − 0.700865i
\(803\) 6.00546e15i 0.634761i
\(804\) −5.29706e15 −0.556066
\(805\) 0 0
\(806\) 4.22387e15 0.437389
\(807\) − 4.88400e14i − 0.0502310i
\(808\) 3.82077e15i 0.390290i
\(809\) −1.22726e16 −1.24514 −0.622572 0.782563i \(-0.713912\pi\)
−0.622572 + 0.782563i \(0.713912\pi\)
\(810\) 0 0
\(811\) 2.48630e15 0.248851 0.124426 0.992229i \(-0.460291\pi\)
0.124426 + 0.992229i \(0.460291\pi\)
\(812\) − 3.57443e15i − 0.355344i
\(813\) − 7.43777e15i − 0.734420i
\(814\) −4.73908e15 −0.464793
\(815\) 0 0
\(816\) 4.88782e14 0.0472954
\(817\) 9.37093e14i 0.0900661i
\(818\) 1.90597e15i 0.181959i
\(819\) −3.13854e15 −0.297623
\(820\) 0 0
\(821\) −1.90122e16 −1.77887 −0.889435 0.457062i \(-0.848902\pi\)
−0.889435 + 0.457062i \(0.848902\pi\)
\(822\) − 2.08567e15i − 0.193843i
\(823\) − 2.42079e15i − 0.223490i −0.993737 0.111745i \(-0.964356\pi\)
0.993737 0.111745i \(-0.0356439\pi\)
\(824\) 1.40978e15 0.129286
\(825\) 0 0
\(826\) 4.62492e15 0.418518
\(827\) − 1.83310e16i − 1.64781i −0.566731 0.823903i \(-0.691792\pi\)
0.566731 0.823903i \(-0.308208\pi\)
\(828\) − 1.98627e15i − 0.177366i
\(829\) 7.71702e15 0.684541 0.342271 0.939601i \(-0.388804\pi\)
0.342271 + 0.939601i \(0.388804\pi\)
\(830\) 0 0
\(831\) −6.75029e15 −0.590904
\(832\) − 2.49480e15i − 0.216949i
\(833\) − 2.78919e15i − 0.240952i
\(834\) −7.80814e15 −0.670092
\(835\) 0 0
\(836\) 4.28201e14 0.0362671
\(837\) − 8.15162e14i − 0.0685889i
\(838\) − 2.64413e15i − 0.221025i
\(839\) 1.33884e16 1.11183 0.555914 0.831240i \(-0.312368\pi\)
0.555914 + 0.831240i \(0.312368\pi\)
\(840\) 0 0
\(841\) 1.10833e16 0.908428
\(842\) 4.98267e15i 0.405738i
\(843\) − 9.60275e15i − 0.776862i
\(844\) −2.52953e15 −0.203309
\(845\) 0 0
\(846\) −9.04813e14 −0.0717831
\(847\) 4.99073e15i 0.393374i
\(848\) 2.67784e15i 0.209704i
\(849\) −8.68878e15 −0.676031
\(850\) 0 0
\(851\) 1.87739e16 1.44192
\(852\) − 2.91618e15i − 0.222534i
\(853\) − 3.99518e15i − 0.302912i −0.988464 0.151456i \(-0.951604\pi\)
0.988464 0.151456i \(-0.0483963\pi\)
\(854\) 5.75478e14 0.0433522
\(855\) 0 0
\(856\) 7.05570e15 0.524728
\(857\) 1.50656e16i 1.11324i 0.830766 + 0.556622i \(0.187903\pi\)
−0.830766 + 0.556622i \(0.812097\pi\)
\(858\) − 4.68173e15i − 0.343737i
\(859\) 2.66635e16 1.94516 0.972579 0.232572i \(-0.0747142\pi\)
0.972579 + 0.232572i \(0.0747142\pi\)
\(860\) 0 0
\(861\) 4.08056e15 0.293902
\(862\) − 1.40884e16i − 1.00826i
\(863\) − 1.36614e16i − 0.971486i −0.874102 0.485743i \(-0.838549\pi\)
0.874102 0.485743i \(-0.161451\pi\)
\(864\) −4.81469e14 −0.0340207
\(865\) 0 0
\(866\) −1.02992e16 −0.718547
\(867\) 7.43389e15i 0.515361i
\(868\) 1.33078e15i 0.0916742i
\(869\) 6.99379e14 0.0478744
\(870\) 0 0
\(871\) 4.94611e16 3.34321
\(872\) 8.39088e15i 0.563595i
\(873\) − 2.44669e15i − 0.163305i
\(874\) −1.69632e15 −0.112511
\(875\) 0 0
\(876\) −5.76684e15 −0.377716
\(877\) − 2.44903e16i − 1.59403i −0.603958 0.797016i \(-0.706410\pi\)
0.603958 0.797016i \(-0.293590\pi\)
\(878\) 2.09112e16i 1.35257i
\(879\) 2.83656e15 0.182328
\(880\) 0 0
\(881\) 9.28368e15 0.589322 0.294661 0.955602i \(-0.404793\pi\)
0.294661 + 0.955602i \(0.404793\pi\)
\(882\) 2.74746e15i 0.173322i
\(883\) − 1.88185e16i − 1.17978i −0.807484 0.589890i \(-0.799171\pi\)
0.807484 0.589890i \(-0.200829\pi\)
\(884\) −4.56399e15 −0.284352
\(885\) 0 0
\(886\) −1.76041e16 −1.08325
\(887\) − 6.50887e14i − 0.0398039i −0.999802 0.0199020i \(-0.993665\pi\)
0.999802 0.0199020i \(-0.00633541\pi\)
\(888\) − 4.55078e15i − 0.276576i
\(889\) −1.37240e16 −0.828937
\(890\) 0 0
\(891\) −9.03523e14 −0.0539029
\(892\) − 5.39352e15i − 0.319790i
\(893\) 7.72734e14i 0.0455352i
\(894\) −5.13533e15 −0.300755
\(895\) 0 0
\(896\) 7.86013e14 0.0454711
\(897\) 1.85467e16i 1.06637i
\(898\) 8.19670e14i 0.0468402i
\(899\) −8.66867e15 −0.492350
\(900\) 0 0
\(901\) 4.89884e15 0.274857
\(902\) 6.08692e15i 0.339439i
\(903\) 3.22802e15i 0.178918i
\(904\) 4.34874e15 0.239573
\(905\) 0 0
\(906\) 1.45112e15 0.0789767
\(907\) 2.01411e16i 1.08954i 0.838585 + 0.544770i \(0.183383\pi\)
−0.838585 + 0.544770i \(0.816617\pi\)
\(908\) 1.17194e16i 0.630133i
\(909\) −6.88514e15 −0.367969
\(910\) 0 0
\(911\) −4.85179e15 −0.256184 −0.128092 0.991762i \(-0.540885\pi\)
−0.128092 + 0.991762i \(0.540885\pi\)
\(912\) 4.11187e14i 0.0215808i
\(913\) 8.46279e15i 0.441493i
\(914\) 5.56422e14 0.0288536
\(915\) 0 0
\(916\) 3.71197e15 0.190186
\(917\) 6.55283e15i 0.333732i
\(918\) 8.80801e14i 0.0445906i
\(919\) −7.50130e15 −0.377486 −0.188743 0.982026i \(-0.560441\pi\)
−0.188743 + 0.982026i \(0.560441\pi\)
\(920\) 0 0
\(921\) −2.18242e16 −1.08520
\(922\) − 2.43782e16i − 1.20499i
\(923\) 2.72298e16i 1.33793i
\(924\) 1.47503e15 0.0720452
\(925\) 0 0
\(926\) −1.24335e16 −0.600111
\(927\) 2.54047e15i 0.121892i
\(928\) 5.12008e15i 0.244210i
\(929\) 6.04589e15 0.286664 0.143332 0.989675i \(-0.454218\pi\)
0.143332 + 0.989675i \(0.454218\pi\)
\(930\) 0 0
\(931\) 2.34640e15 0.109946
\(932\) 1.47519e16i 0.687165i
\(933\) 1.64239e16i 0.760547i
\(934\) 3.91094e15 0.180042
\(935\) 0 0
\(936\) 4.49571e15 0.204541
\(937\) 1.17484e16i 0.531389i 0.964057 + 0.265694i \(0.0856012\pi\)
−0.964057 + 0.265694i \(0.914399\pi\)
\(938\) 1.55833e16i 0.700717i
\(939\) 2.39883e16 1.07235
\(940\) 0 0
\(941\) −5.89103e15 −0.260284 −0.130142 0.991495i \(-0.541543\pi\)
−0.130142 + 0.991495i \(0.541543\pi\)
\(942\) 3.51830e15i 0.154544i
\(943\) − 2.41134e16i − 1.05304i
\(944\) −6.62482e15 −0.287626
\(945\) 0 0
\(946\) −4.81519e15 −0.206639
\(947\) 2.96672e15i 0.126576i 0.997995 + 0.0632881i \(0.0201587\pi\)
−0.997995 + 0.0632881i \(0.979841\pi\)
\(948\) 6.71590e14i 0.0284878i
\(949\) 5.38477e16 2.27093
\(950\) 0 0
\(951\) −2.68570e16 −1.11960
\(952\) − 1.43793e15i − 0.0595985i
\(953\) − 1.10371e15i − 0.0454826i −0.999741 0.0227413i \(-0.992761\pi\)
0.999741 0.0227413i \(-0.00723940\pi\)
\(954\) −4.82556e15 −0.197711
\(955\) 0 0
\(956\) −1.36395e16 −0.552433
\(957\) 9.60832e15i 0.386930i
\(958\) 1.39492e16i 0.558520i
\(959\) −6.13577e15 −0.244268
\(960\) 0 0
\(961\) −2.21811e16 −0.872980
\(962\) 4.24928e16i 1.66285i
\(963\) 1.27146e16i 0.494719i
\(964\) −1.16500e16 −0.450714
\(965\) 0 0
\(966\) −5.84334e15 −0.223505
\(967\) − 1.84533e15i − 0.0701826i −0.999384 0.0350913i \(-0.988828\pi\)
0.999384 0.0350913i \(-0.0111722\pi\)
\(968\) − 7.14881e15i − 0.270346i
\(969\) 7.52227e14 0.0282858
\(970\) 0 0
\(971\) −1.46125e16 −0.543273 −0.271636 0.962400i \(-0.587565\pi\)
−0.271636 + 0.962400i \(0.587565\pi\)
\(972\) − 8.67624e14i − 0.0320750i
\(973\) 2.29706e16i 0.844405i
\(974\) 2.13181e16 0.779245
\(975\) 0 0
\(976\) −8.24326e14 −0.0297937
\(977\) 1.87225e16i 0.672891i 0.941703 + 0.336445i \(0.109225\pi\)
−0.941703 + 0.336445i \(0.890775\pi\)
\(978\) − 1.17936e16i − 0.421486i
\(979\) 1.93196e16 0.686585
\(980\) 0 0
\(981\) −1.51206e16 −0.531362
\(982\) − 7.16215e14i − 0.0250282i
\(983\) − 2.79209e16i − 0.970253i −0.874444 0.485126i \(-0.838774\pi\)
0.874444 0.485126i \(-0.161226\pi\)
\(984\) −5.84507e15 −0.201984
\(985\) 0 0
\(986\) 9.36668e15 0.320083
\(987\) 2.66184e15i 0.0904562i
\(988\) − 3.83945e15i − 0.129750i
\(989\) 1.90754e16 0.641054
\(990\) 0 0
\(991\) 2.46391e16 0.818878 0.409439 0.912337i \(-0.365724\pi\)
0.409439 + 0.912337i \(0.365724\pi\)
\(992\) − 1.90623e15i − 0.0630030i
\(993\) − 1.21538e16i − 0.399475i
\(994\) −8.57903e15 −0.280423
\(995\) 0 0
\(996\) −8.12653e15 −0.262711
\(997\) 4.80148e16i 1.54366i 0.635828 + 0.771831i \(0.280659\pi\)
−0.635828 + 0.771831i \(0.719341\pi\)
\(998\) − 1.56002e15i − 0.0498783i
\(999\) 8.20065e15 0.260758
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.12.c.g.49.1 2
5.2 odd 4 150.12.a.h.1.1 1
5.3 odd 4 30.12.a.a.1.1 1
5.4 even 2 inner 150.12.c.g.49.2 2
15.8 even 4 90.12.a.j.1.1 1
20.3 even 4 240.12.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.12.a.a.1.1 1 5.3 odd 4
90.12.a.j.1.1 1 15.8 even 4
150.12.a.h.1.1 1 5.2 odd 4
150.12.c.g.49.1 2 1.1 even 1 trivial
150.12.c.g.49.2 2 5.4 even 2 inner
240.12.a.d.1.1 1 20.3 even 4