Properties

Label 90.12.a.j.1.1
Level $90$
Weight $12$
Character 90.1
Self dual yes
Analytic conductor $69.151$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [90,12,Mod(1,90)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(90, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("90.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 90.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.1508862504\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 90.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+32.0000 q^{2} +1024.00 q^{4} +3125.00 q^{5} -22876.0 q^{7} +32768.0 q^{8} +100000. q^{10} +259128. q^{11} -2.32346e6 q^{13} -732032. q^{14} +1.04858e6 q^{16} +1.91827e6 q^{17} -1.61374e6 q^{19} +3.20000e6 q^{20} +8.29210e6 q^{22} -3.28492e7 q^{23} +9.76562e6 q^{25} -7.43508e7 q^{26} -2.34250e7 q^{28} -1.52590e8 q^{29} +5.68101e7 q^{31} +3.35544e7 q^{32} +6.13845e7 q^{34} -7.14875e7 q^{35} +5.71517e8 q^{37} -5.16397e7 q^{38} +1.02400e8 q^{40} -7.34063e8 q^{41} -5.80697e8 q^{43} +2.65347e8 q^{44} -1.05117e9 q^{46} -4.78847e8 q^{47} -1.45402e9 q^{49} +3.12500e8 q^{50} -2.37923e9 q^{52} +2.55379e9 q^{53} +8.09775e8 q^{55} -7.49601e8 q^{56} -4.88289e9 q^{58} -6.31792e9 q^{59} -7.86138e8 q^{61} +1.81792e9 q^{62} +1.07374e9 q^{64} -7.26082e9 q^{65} -2.12877e10 q^{67} +1.96430e9 q^{68} -2.28760e9 q^{70} -1.17195e10 q^{71} +2.31756e10 q^{73} +1.82886e10 q^{74} -1.65247e9 q^{76} -5.92781e9 q^{77} +2.69897e9 q^{79} +3.27680e9 q^{80} -2.34900e10 q^{82} -3.26587e10 q^{83} +5.99458e9 q^{85} -1.85823e10 q^{86} +8.49111e9 q^{88} -7.45563e10 q^{89} +5.31515e10 q^{91} -3.36376e10 q^{92} -1.53231e10 q^{94} -5.04294e9 q^{95} +4.14349e10 q^{97} -4.65285e10 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 32.0000 0.707107
\(3\) 0 0
\(4\) 1024.00 0.500000
\(5\) 3125.00 0.447214
\(6\) 0 0
\(7\) −22876.0 −0.514447 −0.257224 0.966352i \(-0.582808\pi\)
−0.257224 + 0.966352i \(0.582808\pi\)
\(8\) 32768.0 0.353553
\(9\) 0 0
\(10\) 100000. 0.316228
\(11\) 259128. 0.485126 0.242563 0.970136i \(-0.422012\pi\)
0.242563 + 0.970136i \(0.422012\pi\)
\(12\) 0 0
\(13\) −2.32346e6 −1.73559 −0.867795 0.496922i \(-0.834463\pi\)
−0.867795 + 0.496922i \(0.834463\pi\)
\(14\) −732032. −0.363769
\(15\) 0 0
\(16\) 1.04858e6 0.250000
\(17\) 1.91827e6 0.327672 0.163836 0.986488i \(-0.447613\pi\)
0.163836 + 0.986488i \(0.447613\pi\)
\(18\) 0 0
\(19\) −1.61374e6 −0.149516 −0.0747582 0.997202i \(-0.523818\pi\)
−0.0747582 + 0.997202i \(0.523818\pi\)
\(20\) 3.20000e6 0.223607
\(21\) 0 0
\(22\) 8.29210e6 0.343036
\(23\) −3.28492e7 −1.06420 −0.532098 0.846683i \(-0.678596\pi\)
−0.532098 + 0.846683i \(0.678596\pi\)
\(24\) 0 0
\(25\) 9.76562e6 0.200000
\(26\) −7.43508e7 −1.22725
\(27\) 0 0
\(28\) −2.34250e7 −0.257224
\(29\) −1.52590e8 −1.38146 −0.690729 0.723113i \(-0.742710\pi\)
−0.690729 + 0.723113i \(0.742710\pi\)
\(30\) 0 0
\(31\) 5.68101e7 0.356399 0.178199 0.983994i \(-0.442973\pi\)
0.178199 + 0.983994i \(0.442973\pi\)
\(32\) 3.35544e7 0.176777
\(33\) 0 0
\(34\) 6.13845e7 0.231699
\(35\) −7.14875e7 −0.230068
\(36\) 0 0
\(37\) 5.71517e8 1.35494 0.677470 0.735551i \(-0.263076\pi\)
0.677470 + 0.735551i \(0.263076\pi\)
\(38\) −5.16397e7 −0.105724
\(39\) 0 0
\(40\) 1.02400e8 0.158114
\(41\) −7.34063e8 −0.989515 −0.494757 0.869031i \(-0.664743\pi\)
−0.494757 + 0.869031i \(0.664743\pi\)
\(42\) 0 0
\(43\) −5.80697e8 −0.602383 −0.301192 0.953564i \(-0.597384\pi\)
−0.301192 + 0.953564i \(0.597384\pi\)
\(44\) 2.65347e8 0.242563
\(45\) 0 0
\(46\) −1.05117e9 −0.752501
\(47\) −4.78847e8 −0.304550 −0.152275 0.988338i \(-0.548660\pi\)
−0.152275 + 0.988338i \(0.548660\pi\)
\(48\) 0 0
\(49\) −1.45402e9 −0.735344
\(50\) 3.12500e8 0.141421
\(51\) 0 0
\(52\) −2.37923e9 −0.867795
\(53\) 2.55379e9 0.838818 0.419409 0.907797i \(-0.362237\pi\)
0.419409 + 0.907797i \(0.362237\pi\)
\(54\) 0 0
\(55\) 8.09775e8 0.216955
\(56\) −7.49601e8 −0.181885
\(57\) 0 0
\(58\) −4.88289e9 −0.976839
\(59\) −6.31792e9 −1.15050 −0.575252 0.817976i \(-0.695096\pi\)
−0.575252 + 0.817976i \(0.695096\pi\)
\(60\) 0 0
\(61\) −7.86138e8 −0.119175 −0.0595874 0.998223i \(-0.518979\pi\)
−0.0595874 + 0.998223i \(0.518979\pi\)
\(62\) 1.81792e9 0.252012
\(63\) 0 0
\(64\) 1.07374e9 0.125000
\(65\) −7.26082e9 −0.776179
\(66\) 0 0
\(67\) −2.12877e10 −1.92627 −0.963135 0.269020i \(-0.913300\pi\)
−0.963135 + 0.269020i \(0.913300\pi\)
\(68\) 1.96430e9 0.163836
\(69\) 0 0
\(70\) −2.28760e9 −0.162683
\(71\) −1.17195e10 −0.770881 −0.385441 0.922733i \(-0.625951\pi\)
−0.385441 + 0.922733i \(0.625951\pi\)
\(72\) 0 0
\(73\) 2.31756e10 1.30845 0.654223 0.756302i \(-0.272996\pi\)
0.654223 + 0.756302i \(0.272996\pi\)
\(74\) 1.82886e10 0.958087
\(75\) 0 0
\(76\) −1.65247e9 −0.0747582
\(77\) −5.92781e9 −0.249572
\(78\) 0 0
\(79\) 2.69897e9 0.0986845 0.0493423 0.998782i \(-0.484287\pi\)
0.0493423 + 0.998782i \(0.484287\pi\)
\(80\) 3.27680e9 0.111803
\(81\) 0 0
\(82\) −2.34900e10 −0.699692
\(83\) −3.26587e10 −0.910059 −0.455029 0.890476i \(-0.650371\pi\)
−0.455029 + 0.890476i \(0.650371\pi\)
\(84\) 0 0
\(85\) 5.99458e9 0.146540
\(86\) −1.85823e10 −0.425949
\(87\) 0 0
\(88\) 8.49111e9 0.171518
\(89\) −7.45563e10 −1.41527 −0.707635 0.706578i \(-0.750238\pi\)
−0.707635 + 0.706578i \(0.750238\pi\)
\(90\) 0 0
\(91\) 5.31515e10 0.892870
\(92\) −3.36376e10 −0.532098
\(93\) 0 0
\(94\) −1.53231e10 −0.215349
\(95\) −5.04294e9 −0.0668658
\(96\) 0 0
\(97\) 4.14349e10 0.489916 0.244958 0.969534i \(-0.421226\pi\)
0.244958 + 0.969534i \(0.421226\pi\)
\(98\) −4.65285e10 −0.519967
\(99\) 0 0
\(100\) 1.00000e10 0.100000
\(101\) −1.16600e11 −1.10391 −0.551954 0.833875i \(-0.686118\pi\)
−0.551954 + 0.833875i \(0.686118\pi\)
\(102\) 0 0
\(103\) 4.30231e10 0.365676 0.182838 0.983143i \(-0.441472\pi\)
0.182838 + 0.983143i \(0.441472\pi\)
\(104\) −7.61352e10 −0.613624
\(105\) 0 0
\(106\) 8.17212e10 0.593134
\(107\) 2.15323e11 1.48416 0.742078 0.670313i \(-0.233840\pi\)
0.742078 + 0.670313i \(0.233840\pi\)
\(108\) 0 0
\(109\) −2.56069e11 −1.59409 −0.797044 0.603922i \(-0.793604\pi\)
−0.797044 + 0.603922i \(0.793604\pi\)
\(110\) 2.59128e10 0.153410
\(111\) 0 0
\(112\) −2.39872e10 −0.128612
\(113\) −1.32713e11 −0.677613 −0.338807 0.940856i \(-0.610023\pi\)
−0.338807 + 0.940856i \(0.610023\pi\)
\(114\) 0 0
\(115\) −1.02654e11 −0.475923
\(116\) −1.56252e11 −0.690729
\(117\) 0 0
\(118\) −2.02173e11 −0.813529
\(119\) −4.38823e10 −0.168570
\(120\) 0 0
\(121\) −2.18164e11 −0.764653
\(122\) −2.51564e10 −0.0842694
\(123\) 0 0
\(124\) 5.81735e10 0.178199
\(125\) 3.05176e10 0.0894427
\(126\) 0 0
\(127\) −5.99930e11 −1.61132 −0.805658 0.592382i \(-0.798188\pi\)
−0.805658 + 0.592382i \(0.798188\pi\)
\(128\) 3.43597e10 0.0883883
\(129\) 0 0
\(130\) −2.32346e11 −0.548842
\(131\) 2.86450e11 0.648719 0.324360 0.945934i \(-0.394851\pi\)
0.324360 + 0.945934i \(0.394851\pi\)
\(132\) 0 0
\(133\) 3.69159e10 0.0769183
\(134\) −6.81206e11 −1.36208
\(135\) 0 0
\(136\) 6.28577e10 0.115850
\(137\) 2.68219e11 0.474817 0.237408 0.971410i \(-0.423702\pi\)
0.237408 + 0.971410i \(0.423702\pi\)
\(138\) 0 0
\(139\) 1.00413e12 1.64138 0.820692 0.571371i \(-0.193588\pi\)
0.820692 + 0.571371i \(0.193588\pi\)
\(140\) −7.32032e10 −0.115034
\(141\) 0 0
\(142\) −3.75023e11 −0.545095
\(143\) −6.02074e11 −0.841980
\(144\) 0 0
\(145\) −4.76845e11 −0.617807
\(146\) 7.41620e11 0.925211
\(147\) 0 0
\(148\) 5.85234e11 0.677470
\(149\) −6.60408e11 −0.736695 −0.368348 0.929688i \(-0.620076\pi\)
−0.368348 + 0.929688i \(0.620076\pi\)
\(150\) 0 0
\(151\) 1.86615e11 0.193453 0.0967263 0.995311i \(-0.469163\pi\)
0.0967263 + 0.995311i \(0.469163\pi\)
\(152\) −5.28790e10 −0.0528620
\(153\) 0 0
\(154\) −1.89690e11 −0.176474
\(155\) 1.77531e11 0.159386
\(156\) 0 0
\(157\) 4.52456e11 0.378554 0.189277 0.981924i \(-0.439386\pi\)
0.189277 + 0.981924i \(0.439386\pi\)
\(158\) 8.63670e10 0.0697805
\(159\) 0 0
\(160\) 1.04858e11 0.0790569
\(161\) 7.51458e11 0.547473
\(162\) 0 0
\(163\) 1.51667e12 1.03243 0.516213 0.856460i \(-0.327341\pi\)
0.516213 + 0.856460i \(0.327341\pi\)
\(164\) −7.51681e11 −0.494757
\(165\) 0 0
\(166\) −1.04508e12 −0.643509
\(167\) 2.35061e12 1.40036 0.700181 0.713965i \(-0.253103\pi\)
0.700181 + 0.713965i \(0.253103\pi\)
\(168\) 0 0
\(169\) 3.60632e12 2.01227
\(170\) 1.91827e11 0.103619
\(171\) 0 0
\(172\) −5.94633e11 −0.301192
\(173\) −9.01111e11 −0.442104 −0.221052 0.975262i \(-0.570949\pi\)
−0.221052 + 0.975262i \(0.570949\pi\)
\(174\) 0 0
\(175\) −2.23398e11 −0.102889
\(176\) 2.71715e11 0.121282
\(177\) 0 0
\(178\) −2.38580e12 −1.00075
\(179\) 9.77006e11 0.397379 0.198690 0.980062i \(-0.436331\pi\)
0.198690 + 0.980062i \(0.436331\pi\)
\(180\) 0 0
\(181\) 3.83020e12 1.46551 0.732756 0.680491i \(-0.238234\pi\)
0.732756 + 0.680491i \(0.238234\pi\)
\(182\) 1.70085e12 0.631354
\(183\) 0 0
\(184\) −1.07640e12 −0.376250
\(185\) 1.78599e12 0.605947
\(186\) 0 0
\(187\) 4.97076e11 0.158962
\(188\) −4.90339e11 −0.152275
\(189\) 0 0
\(190\) −1.61374e11 −0.0472812
\(191\) 2.49694e12 0.710764 0.355382 0.934721i \(-0.384351\pi\)
0.355382 + 0.934721i \(0.384351\pi\)
\(192\) 0 0
\(193\) 5.19794e12 1.39722 0.698612 0.715500i \(-0.253801\pi\)
0.698612 + 0.715500i \(0.253801\pi\)
\(194\) 1.32592e12 0.346423
\(195\) 0 0
\(196\) −1.48891e12 −0.367672
\(197\) 5.70399e12 1.36967 0.684833 0.728700i \(-0.259875\pi\)
0.684833 + 0.728700i \(0.259875\pi\)
\(198\) 0 0
\(199\) −6.39817e11 −0.145333 −0.0726664 0.997356i \(-0.523151\pi\)
−0.0726664 + 0.997356i \(0.523151\pi\)
\(200\) 3.20000e11 0.0707107
\(201\) 0 0
\(202\) −3.73122e12 −0.780581
\(203\) 3.49066e12 0.710688
\(204\) 0 0
\(205\) −2.29395e12 −0.442524
\(206\) 1.37674e12 0.258572
\(207\) 0 0
\(208\) −2.43633e12 −0.433897
\(209\) −4.18165e11 −0.0725343
\(210\) 0 0
\(211\) 2.47025e12 0.406618 0.203309 0.979115i \(-0.434830\pi\)
0.203309 + 0.979115i \(0.434830\pi\)
\(212\) 2.61508e12 0.419409
\(213\) 0 0
\(214\) 6.89034e12 1.04946
\(215\) −1.81468e12 −0.269394
\(216\) 0 0
\(217\) −1.29959e12 −0.183348
\(218\) −8.19422e12 −1.12719
\(219\) 0 0
\(220\) 8.29210e11 0.108477
\(221\) −4.45702e12 −0.568705
\(222\) 0 0
\(223\) −5.26711e12 −0.639581 −0.319790 0.947488i \(-0.603613\pi\)
−0.319790 + 0.947488i \(0.603613\pi\)
\(224\) −7.67591e11 −0.0909423
\(225\) 0 0
\(226\) −4.24682e12 −0.479145
\(227\) 1.14447e13 1.26027 0.630133 0.776488i \(-0.283001\pi\)
0.630133 + 0.776488i \(0.283001\pi\)
\(228\) 0 0
\(229\) 3.62497e12 0.380372 0.190186 0.981748i \(-0.439091\pi\)
0.190186 + 0.981748i \(0.439091\pi\)
\(230\) −3.28492e12 −0.336528
\(231\) 0 0
\(232\) −5.00008e12 −0.488419
\(233\) −1.44062e13 −1.37433 −0.687165 0.726501i \(-0.741145\pi\)
−0.687165 + 0.726501i \(0.741145\pi\)
\(234\) 0 0
\(235\) −1.49640e12 −0.136199
\(236\) −6.46955e12 −0.575252
\(237\) 0 0
\(238\) −1.40423e12 −0.119197
\(239\) 1.33198e13 1.10487 0.552433 0.833557i \(-0.313699\pi\)
0.552433 + 0.833557i \(0.313699\pi\)
\(240\) 0 0
\(241\) 1.13769e13 0.901428 0.450714 0.892668i \(-0.351169\pi\)
0.450714 + 0.892668i \(0.351169\pi\)
\(242\) −6.98126e12 −0.540691
\(243\) 0 0
\(244\) −8.05005e11 −0.0595874
\(245\) −4.54380e12 −0.328856
\(246\) 0 0
\(247\) 3.74946e12 0.259499
\(248\) 1.86155e12 0.126006
\(249\) 0 0
\(250\) 9.76562e11 0.0632456
\(251\) 2.83662e12 0.179719 0.0898597 0.995954i \(-0.471358\pi\)
0.0898597 + 0.995954i \(0.471358\pi\)
\(252\) 0 0
\(253\) −8.51215e12 −0.516269
\(254\) −1.91978e13 −1.13937
\(255\) 0 0
\(256\) 1.09951e12 0.0625000
\(257\) −3.01443e13 −1.67715 −0.838576 0.544784i \(-0.816612\pi\)
−0.838576 + 0.544784i \(0.816612\pi\)
\(258\) 0 0
\(259\) −1.30740e13 −0.697045
\(260\) −7.43508e12 −0.388090
\(261\) 0 0
\(262\) 9.16641e12 0.458714
\(263\) −3.80917e13 −1.86670 −0.933349 0.358971i \(-0.883128\pi\)
−0.933349 + 0.358971i \(0.883128\pi\)
\(264\) 0 0
\(265\) 7.98059e12 0.375131
\(266\) 1.18131e12 0.0543894
\(267\) 0 0
\(268\) −2.17986e13 −0.963135
\(269\) −2.00988e12 −0.0870026 −0.0435013 0.999053i \(-0.513851\pi\)
−0.0435013 + 0.999053i \(0.513851\pi\)
\(270\) 0 0
\(271\) −3.06081e13 −1.27205 −0.636027 0.771667i \(-0.719423\pi\)
−0.636027 + 0.771667i \(0.719423\pi\)
\(272\) 2.01145e12 0.0819181
\(273\) 0 0
\(274\) 8.58300e12 0.335746
\(275\) 2.53055e12 0.0970252
\(276\) 0 0
\(277\) 2.77790e13 1.02348 0.511738 0.859142i \(-0.329002\pi\)
0.511738 + 0.859142i \(0.329002\pi\)
\(278\) 3.21323e13 1.16063
\(279\) 0 0
\(280\) −2.34250e12 −0.0813413
\(281\) 3.95175e13 1.34557 0.672783 0.739840i \(-0.265099\pi\)
0.672783 + 0.739840i \(0.265099\pi\)
\(282\) 0 0
\(283\) −3.57563e13 −1.17092 −0.585460 0.810701i \(-0.699086\pi\)
−0.585460 + 0.810701i \(0.699086\pi\)
\(284\) −1.20007e13 −0.385441
\(285\) 0 0
\(286\) −1.92664e13 −0.595370
\(287\) 1.67924e13 0.509053
\(288\) 0 0
\(289\) −3.05922e13 −0.892631
\(290\) −1.52590e13 −0.436856
\(291\) 0 0
\(292\) 2.37318e13 0.654223
\(293\) −1.16731e13 −0.315801 −0.157901 0.987455i \(-0.550473\pi\)
−0.157901 + 0.987455i \(0.550473\pi\)
\(294\) 0 0
\(295\) −1.97435e13 −0.514521
\(296\) 1.87275e13 0.479043
\(297\) 0 0
\(298\) −2.11331e13 −0.520922
\(299\) 7.63239e13 1.84701
\(300\) 0 0
\(301\) 1.32840e13 0.309894
\(302\) 5.97169e12 0.136792
\(303\) 0 0
\(304\) −1.69213e12 −0.0373791
\(305\) −2.45668e12 −0.0532966
\(306\) 0 0
\(307\) 8.98114e13 1.87962 0.939811 0.341695i \(-0.111001\pi\)
0.939811 + 0.341695i \(0.111001\pi\)
\(308\) −6.07008e12 −0.124786
\(309\) 0 0
\(310\) 5.68101e12 0.112703
\(311\) −6.75879e13 −1.31731 −0.658653 0.752446i \(-0.728874\pi\)
−0.658653 + 0.752446i \(0.728874\pi\)
\(312\) 0 0
\(313\) 9.87171e13 1.85737 0.928685 0.370869i \(-0.120940\pi\)
0.928685 + 0.370869i \(0.120940\pi\)
\(314\) 1.44786e13 0.267678
\(315\) 0 0
\(316\) 2.76374e12 0.0493423
\(317\) −1.10523e14 −1.93921 −0.969605 0.244674i \(-0.921319\pi\)
−0.969605 + 0.244674i \(0.921319\pi\)
\(318\) 0 0
\(319\) −3.95404e13 −0.670182
\(320\) 3.35544e12 0.0559017
\(321\) 0 0
\(322\) 2.40467e13 0.387122
\(323\) −3.09558e12 −0.0489924
\(324\) 0 0
\(325\) −2.26901e13 −0.347118
\(326\) 4.85334e13 0.730036
\(327\) 0 0
\(328\) −2.40538e13 −0.349846
\(329\) 1.09541e13 0.156675
\(330\) 0 0
\(331\) −5.00155e13 −0.691912 −0.345956 0.938251i \(-0.612445\pi\)
−0.345956 + 0.938251i \(0.612445\pi\)
\(332\) −3.34425e13 −0.455029
\(333\) 0 0
\(334\) 7.52196e13 0.990205
\(335\) −6.65240e13 −0.861454
\(336\) 0 0
\(337\) −3.62478e12 −0.0454274 −0.0227137 0.999742i \(-0.507231\pi\)
−0.0227137 + 0.999742i \(0.507231\pi\)
\(338\) 1.15402e14 1.42289
\(339\) 0 0
\(340\) 6.13845e12 0.0732698
\(341\) 1.47211e13 0.172898
\(342\) 0 0
\(343\) 7.84954e13 0.892743
\(344\) −1.90283e13 −0.212975
\(345\) 0 0
\(346\) −2.88355e13 −0.312615
\(347\) −6.56058e12 −0.0700051 −0.0350026 0.999387i \(-0.511144\pi\)
−0.0350026 + 0.999387i \(0.511144\pi\)
\(348\) 0 0
\(349\) −8.14353e13 −0.841924 −0.420962 0.907078i \(-0.638307\pi\)
−0.420962 + 0.907078i \(0.638307\pi\)
\(350\) −7.14875e12 −0.0727538
\(351\) 0 0
\(352\) 8.69489e12 0.0857590
\(353\) −1.03792e14 −1.00787 −0.503934 0.863742i \(-0.668115\pi\)
−0.503934 + 0.863742i \(0.668115\pi\)
\(354\) 0 0
\(355\) −3.66234e13 −0.344749
\(356\) −7.63457e13 −0.707635
\(357\) 0 0
\(358\) 3.12642e13 0.280990
\(359\) 1.38258e14 1.22369 0.611845 0.790978i \(-0.290428\pi\)
0.611845 + 0.790978i \(0.290428\pi\)
\(360\) 0 0
\(361\) −1.13886e14 −0.977645
\(362\) 1.22566e14 1.03627
\(363\) 0 0
\(364\) 5.44272e13 0.446435
\(365\) 7.24239e13 0.585155
\(366\) 0 0
\(367\) 1.16357e14 0.912282 0.456141 0.889908i \(-0.349231\pi\)
0.456141 + 0.889908i \(0.349231\pi\)
\(368\) −3.44449e13 −0.266049
\(369\) 0 0
\(370\) 5.71517e13 0.428470
\(371\) −5.84205e13 −0.431527
\(372\) 0 0
\(373\) −6.72186e13 −0.482049 −0.241024 0.970519i \(-0.577483\pi\)
−0.241024 + 0.970519i \(0.577483\pi\)
\(374\) 1.59064e13 0.112403
\(375\) 0 0
\(376\) −1.56908e13 −0.107675
\(377\) 3.54538e14 2.39765
\(378\) 0 0
\(379\) −1.32840e14 −0.872598 −0.436299 0.899802i \(-0.643711\pi\)
−0.436299 + 0.899802i \(0.643711\pi\)
\(380\) −5.16397e12 −0.0334329
\(381\) 0 0
\(382\) 7.99022e13 0.502586
\(383\) 2.69810e14 1.67288 0.836439 0.548060i \(-0.184633\pi\)
0.836439 + 0.548060i \(0.184633\pi\)
\(384\) 0 0
\(385\) −1.85244e13 −0.111612
\(386\) 1.66334e14 0.987987
\(387\) 0 0
\(388\) 4.24293e13 0.244958
\(389\) −9.81084e13 −0.558449 −0.279224 0.960226i \(-0.590077\pi\)
−0.279224 + 0.960226i \(0.590077\pi\)
\(390\) 0 0
\(391\) −6.30135e13 −0.348708
\(392\) −4.76452e13 −0.259983
\(393\) 0 0
\(394\) 1.82528e14 0.968500
\(395\) 8.43428e12 0.0441331
\(396\) 0 0
\(397\) −6.44136e13 −0.327816 −0.163908 0.986476i \(-0.552410\pi\)
−0.163908 + 0.986476i \(0.552410\pi\)
\(398\) −2.04741e13 −0.102766
\(399\) 0 0
\(400\) 1.02400e13 0.0500000
\(401\) −2.05799e14 −0.991172 −0.495586 0.868559i \(-0.665047\pi\)
−0.495586 + 0.868559i \(0.665047\pi\)
\(402\) 0 0
\(403\) −1.31996e14 −0.618562
\(404\) −1.19399e14 −0.551954
\(405\) 0 0
\(406\) 1.11701e14 0.502532
\(407\) 1.48096e14 0.657316
\(408\) 0 0
\(409\) 5.95615e13 0.257328 0.128664 0.991688i \(-0.458931\pi\)
0.128664 + 0.991688i \(0.458931\pi\)
\(410\) −7.34063e13 −0.312912
\(411\) 0 0
\(412\) 4.40556e13 0.182838
\(413\) 1.44529e14 0.591874
\(414\) 0 0
\(415\) −1.02058e14 −0.406991
\(416\) −7.79624e13 −0.306812
\(417\) 0 0
\(418\) −1.33813e13 −0.0512895
\(419\) 8.26291e13 0.312576 0.156288 0.987712i \(-0.450047\pi\)
0.156288 + 0.987712i \(0.450047\pi\)
\(420\) 0 0
\(421\) −1.55708e14 −0.573800 −0.286900 0.957961i \(-0.592625\pi\)
−0.286900 + 0.957961i \(0.592625\pi\)
\(422\) 7.90479e13 0.287523
\(423\) 0 0
\(424\) 8.36825e13 0.296567
\(425\) 1.87331e13 0.0655345
\(426\) 0 0
\(427\) 1.79837e13 0.0613092
\(428\) 2.20491e14 0.742078
\(429\) 0 0
\(430\) −5.80697e13 −0.190490
\(431\) −4.40261e14 −1.42589 −0.712944 0.701221i \(-0.752639\pi\)
−0.712944 + 0.701221i \(0.752639\pi\)
\(432\) 0 0
\(433\) 3.21850e14 1.01618 0.508089 0.861304i \(-0.330352\pi\)
0.508089 + 0.861304i \(0.330352\pi\)
\(434\) −4.15868e13 −0.129647
\(435\) 0 0
\(436\) −2.62215e14 −0.797044
\(437\) 5.30101e13 0.159115
\(438\) 0 0
\(439\) 6.53476e14 1.91282 0.956411 0.292025i \(-0.0943289\pi\)
0.956411 + 0.292025i \(0.0943289\pi\)
\(440\) 2.65347e13 0.0767052
\(441\) 0 0
\(442\) −1.42625e14 −0.402135
\(443\) −5.50129e14 −1.53195 −0.765974 0.642872i \(-0.777743\pi\)
−0.765974 + 0.642872i \(0.777743\pi\)
\(444\) 0 0
\(445\) −2.32989e14 −0.632928
\(446\) −1.68547e14 −0.452252
\(447\) 0 0
\(448\) −2.45629e13 −0.0643059
\(449\) −2.56147e13 −0.0662421 −0.0331210 0.999451i \(-0.510545\pi\)
−0.0331210 + 0.999451i \(0.510545\pi\)
\(450\) 0 0
\(451\) −1.90216e14 −0.480039
\(452\) −1.35898e14 −0.338807
\(453\) 0 0
\(454\) 3.66230e14 0.891142
\(455\) 1.66098e14 0.399303
\(456\) 0 0
\(457\) 1.73882e13 0.0408052 0.0204026 0.999792i \(-0.493505\pi\)
0.0204026 + 0.999792i \(0.493505\pi\)
\(458\) 1.15999e14 0.268964
\(459\) 0 0
\(460\) −1.05117e14 −0.237962
\(461\) −7.61820e14 −1.70411 −0.852055 0.523453i \(-0.824644\pi\)
−0.852055 + 0.523453i \(0.824644\pi\)
\(462\) 0 0
\(463\) 3.88545e14 0.848684 0.424342 0.905502i \(-0.360505\pi\)
0.424342 + 0.905502i \(0.360505\pi\)
\(464\) −1.60003e14 −0.345365
\(465\) 0 0
\(466\) −4.60998e14 −0.971799
\(467\) −1.22217e14 −0.254618 −0.127309 0.991863i \(-0.540634\pi\)
−0.127309 + 0.991863i \(0.540634\pi\)
\(468\) 0 0
\(469\) 4.86977e14 0.990964
\(470\) −4.78847e13 −0.0963071
\(471\) 0 0
\(472\) −2.07026e14 −0.406765
\(473\) −1.50475e14 −0.292232
\(474\) 0 0
\(475\) −1.57592e13 −0.0299033
\(476\) −4.49354e13 −0.0842851
\(477\) 0 0
\(478\) 4.26234e14 0.781259
\(479\) −4.35912e14 −0.789866 −0.394933 0.918710i \(-0.629232\pi\)
−0.394933 + 0.918710i \(0.629232\pi\)
\(480\) 0 0
\(481\) −1.32790e15 −2.35162
\(482\) 3.64061e14 0.637406
\(483\) 0 0
\(484\) −2.23400e14 −0.382326
\(485\) 1.29484e14 0.219097
\(486\) 0 0
\(487\) 6.66191e14 1.10202 0.551010 0.834499i \(-0.314243\pi\)
0.551010 + 0.834499i \(0.314243\pi\)
\(488\) −2.57602e13 −0.0421347
\(489\) 0 0
\(490\) −1.45402e14 −0.232536
\(491\) −2.23817e13 −0.0353953 −0.0176976 0.999843i \(-0.505634\pi\)
−0.0176976 + 0.999843i \(0.505634\pi\)
\(492\) 0 0
\(493\) −2.92709e14 −0.452666
\(494\) 1.19983e14 0.183494
\(495\) 0 0
\(496\) 5.95697e13 0.0890997
\(497\) 2.68095e14 0.396578
\(498\) 0 0
\(499\) −4.87506e13 −0.0705386 −0.0352693 0.999378i \(-0.511229\pi\)
−0.0352693 + 0.999378i \(0.511229\pi\)
\(500\) 3.12500e13 0.0447214
\(501\) 0 0
\(502\) 9.07717e13 0.127081
\(503\) −2.64333e14 −0.366039 −0.183019 0.983109i \(-0.558587\pi\)
−0.183019 + 0.983109i \(0.558587\pi\)
\(504\) 0 0
\(505\) −3.64377e14 −0.493683
\(506\) −2.72389e14 −0.365058
\(507\) 0 0
\(508\) −6.14329e14 −0.805658
\(509\) −8.09106e13 −0.104968 −0.0524841 0.998622i \(-0.516714\pi\)
−0.0524841 + 0.998622i \(0.516714\pi\)
\(510\) 0 0
\(511\) −5.30166e14 −0.673127
\(512\) 3.51844e13 0.0441942
\(513\) 0 0
\(514\) −9.64617e14 −1.18593
\(515\) 1.34447e14 0.163535
\(516\) 0 0
\(517\) −1.24083e14 −0.147745
\(518\) −4.18369e14 −0.492885
\(519\) 0 0
\(520\) −2.37923e14 −0.274421
\(521\) 1.10833e14 0.126491 0.0632456 0.997998i \(-0.479855\pi\)
0.0632456 + 0.997998i \(0.479855\pi\)
\(522\) 0 0
\(523\) 6.91114e14 0.772308 0.386154 0.922434i \(-0.373803\pi\)
0.386154 + 0.922434i \(0.373803\pi\)
\(524\) 2.93325e14 0.324360
\(525\) 0 0
\(526\) −1.21894e15 −1.31995
\(527\) 1.08977e14 0.116782
\(528\) 0 0
\(529\) 1.26261e14 0.132514
\(530\) 2.55379e14 0.265257
\(531\) 0 0
\(532\) 3.78019e13 0.0384591
\(533\) 1.70557e15 1.71739
\(534\) 0 0
\(535\) 6.72884e14 0.663735
\(536\) −6.97555e14 −0.681039
\(537\) 0 0
\(538\) −6.43161e13 −0.0615201
\(539\) −3.76776e14 −0.356735
\(540\) 0 0
\(541\) −2.02808e15 −1.88148 −0.940741 0.339125i \(-0.889869\pi\)
−0.940741 + 0.339125i \(0.889869\pi\)
\(542\) −9.79460e14 −0.899478
\(543\) 0 0
\(544\) 6.43663e13 0.0579248
\(545\) −8.00217e14 −0.712897
\(546\) 0 0
\(547\) 2.06348e15 1.80165 0.900826 0.434180i \(-0.142962\pi\)
0.900826 + 0.434180i \(0.142962\pi\)
\(548\) 2.74656e14 0.237408
\(549\) 0 0
\(550\) 8.09775e13 0.0686072
\(551\) 2.46241e14 0.206551
\(552\) 0 0
\(553\) −6.17416e13 −0.0507680
\(554\) 8.88927e14 0.723707
\(555\) 0 0
\(556\) 1.02823e15 0.820692
\(557\) 2.11828e15 1.67409 0.837047 0.547130i \(-0.184280\pi\)
0.837047 + 0.547130i \(0.184280\pi\)
\(558\) 0 0
\(559\) 1.34923e15 1.04549
\(560\) −7.49601e13 −0.0575170
\(561\) 0 0
\(562\) 1.26456e15 0.951458
\(563\) 1.16211e15 0.865870 0.432935 0.901425i \(-0.357478\pi\)
0.432935 + 0.901425i \(0.357478\pi\)
\(564\) 0 0
\(565\) −4.14728e14 −0.303038
\(566\) −1.14420e15 −0.827965
\(567\) 0 0
\(568\) −3.84024e14 −0.272548
\(569\) −1.19782e15 −0.841927 −0.420964 0.907077i \(-0.638308\pi\)
−0.420964 + 0.907077i \(0.638308\pi\)
\(570\) 0 0
\(571\) 1.46355e15 1.00904 0.504522 0.863399i \(-0.331669\pi\)
0.504522 + 0.863399i \(0.331669\pi\)
\(572\) −6.16524e14 −0.420990
\(573\) 0 0
\(574\) 5.37358e14 0.359955
\(575\) −3.20793e14 −0.212839
\(576\) 0 0
\(577\) 1.97111e15 1.28305 0.641526 0.767101i \(-0.278302\pi\)
0.641526 + 0.767101i \(0.278302\pi\)
\(578\) −9.78949e14 −0.631185
\(579\) 0 0
\(580\) −4.88289e14 −0.308904
\(581\) 7.47101e14 0.468177
\(582\) 0 0
\(583\) 6.61758e14 0.406932
\(584\) 7.59419e14 0.462606
\(585\) 0 0
\(586\) −3.73539e14 −0.223305
\(587\) −3.58593e14 −0.212369 −0.106185 0.994346i \(-0.533863\pi\)
−0.106185 + 0.994346i \(0.533863\pi\)
\(588\) 0 0
\(589\) −9.16767e13 −0.0532874
\(590\) −6.31792e14 −0.363821
\(591\) 0 0
\(592\) 5.99279e14 0.338735
\(593\) 1.43925e15 0.806003 0.403001 0.915199i \(-0.367967\pi\)
0.403001 + 0.915199i \(0.367967\pi\)
\(594\) 0 0
\(595\) −1.37132e14 −0.0753869
\(596\) −6.76258e14 −0.368348
\(597\) 0 0
\(598\) 2.44236e15 1.30603
\(599\) 3.41497e15 1.80942 0.904710 0.426028i \(-0.140088\pi\)
0.904710 + 0.426028i \(0.140088\pi\)
\(600\) 0 0
\(601\) 2.49987e15 1.30049 0.650245 0.759725i \(-0.274666\pi\)
0.650245 + 0.759725i \(0.274666\pi\)
\(602\) 4.25089e14 0.219128
\(603\) 0 0
\(604\) 1.91094e14 0.0967263
\(605\) −6.81764e14 −0.341963
\(606\) 0 0
\(607\) −2.34097e13 −0.0115308 −0.00576538 0.999983i \(-0.501835\pi\)
−0.00576538 + 0.999983i \(0.501835\pi\)
\(608\) −5.41481e13 −0.0264310
\(609\) 0 0
\(610\) −7.86138e13 −0.0376864
\(611\) 1.11258e15 0.528573
\(612\) 0 0
\(613\) −1.82595e15 −0.852032 −0.426016 0.904716i \(-0.640083\pi\)
−0.426016 + 0.904716i \(0.640083\pi\)
\(614\) 2.87397e15 1.32909
\(615\) 0 0
\(616\) −1.94243e14 −0.0882369
\(617\) 9.58777e14 0.431667 0.215834 0.976430i \(-0.430753\pi\)
0.215834 + 0.976430i \(0.430753\pi\)
\(618\) 0 0
\(619\) −6.16431e13 −0.0272638 −0.0136319 0.999907i \(-0.504339\pi\)
−0.0136319 + 0.999907i \(0.504339\pi\)
\(620\) 1.81792e14 0.0796932
\(621\) 0 0
\(622\) −2.16281e15 −0.931477
\(623\) 1.70555e15 0.728082
\(624\) 0 0
\(625\) 9.53674e13 0.0400000
\(626\) 3.15895e15 1.31336
\(627\) 0 0
\(628\) 4.63315e14 0.189277
\(629\) 1.09632e15 0.443976
\(630\) 0 0
\(631\) −3.38937e15 −1.34883 −0.674416 0.738352i \(-0.735604\pi\)
−0.674416 + 0.738352i \(0.735604\pi\)
\(632\) 8.84398e13 0.0348902
\(633\) 0 0
\(634\) −3.53672e15 −1.37123
\(635\) −1.87478e15 −0.720602
\(636\) 0 0
\(637\) 3.37835e15 1.27626
\(638\) −1.26529e15 −0.473890
\(639\) 0 0
\(640\) 1.07374e14 0.0395285
\(641\) −2.53363e15 −0.924749 −0.462375 0.886685i \(-0.653002\pi\)
−0.462375 + 0.886685i \(0.653002\pi\)
\(642\) 0 0
\(643\) −4.33651e15 −1.55589 −0.777946 0.628331i \(-0.783739\pi\)
−0.777946 + 0.628331i \(0.783739\pi\)
\(644\) 7.69493e14 0.273736
\(645\) 0 0
\(646\) −9.90586e13 −0.0346428
\(647\) 1.86323e15 0.646090 0.323045 0.946384i \(-0.395294\pi\)
0.323045 + 0.946384i \(0.395294\pi\)
\(648\) 0 0
\(649\) −1.63715e15 −0.558139
\(650\) −7.26082e14 −0.245449
\(651\) 0 0
\(652\) 1.55307e15 0.516213
\(653\) −5.87157e15 −1.93523 −0.967613 0.252440i \(-0.918767\pi\)
−0.967613 + 0.252440i \(0.918767\pi\)
\(654\) 0 0
\(655\) 8.95157e14 0.290116
\(656\) −7.69721e14 −0.247379
\(657\) 0 0
\(658\) 3.50531e14 0.110786
\(659\) 1.57270e14 0.0492920 0.0246460 0.999696i \(-0.492154\pi\)
0.0246460 + 0.999696i \(0.492154\pi\)
\(660\) 0 0
\(661\) −4.86756e15 −1.50039 −0.750193 0.661219i \(-0.770039\pi\)
−0.750193 + 0.661219i \(0.770039\pi\)
\(662\) −1.60050e15 −0.489256
\(663\) 0 0
\(664\) −1.07016e15 −0.321754
\(665\) 1.15362e14 0.0343989
\(666\) 0 0
\(667\) 5.01247e15 1.47014
\(668\) 2.40703e15 0.700181
\(669\) 0 0
\(670\) −2.12877e15 −0.609140
\(671\) −2.03710e14 −0.0578148
\(672\) 0 0
\(673\) −5.94031e14 −0.165854 −0.0829270 0.996556i \(-0.526427\pi\)
−0.0829270 + 0.996556i \(0.526427\pi\)
\(674\) −1.15993e14 −0.0321220
\(675\) 0 0
\(676\) 3.69287e15 1.00614
\(677\) −3.03615e15 −0.820513 −0.410257 0.911970i \(-0.634561\pi\)
−0.410257 + 0.911970i \(0.634561\pi\)
\(678\) 0 0
\(679\) −9.47864e14 −0.252036
\(680\) 1.96430e14 0.0518095
\(681\) 0 0
\(682\) 4.71075e14 0.122258
\(683\) −2.38176e15 −0.613174 −0.306587 0.951843i \(-0.599187\pi\)
−0.306587 + 0.951843i \(0.599187\pi\)
\(684\) 0 0
\(685\) 8.38184e14 0.212345
\(686\) 2.51185e15 0.631265
\(687\) 0 0
\(688\) −6.08905e14 −0.150596
\(689\) −5.93363e15 −1.45584
\(690\) 0 0
\(691\) 1.02015e15 0.246339 0.123170 0.992386i \(-0.460694\pi\)
0.123170 + 0.992386i \(0.460694\pi\)
\(692\) −9.22737e14 −0.221052
\(693\) 0 0
\(694\) −2.09938e14 −0.0495011
\(695\) 3.13792e15 0.734049
\(696\) 0 0
\(697\) −1.40813e15 −0.324237
\(698\) −2.60593e15 −0.595330
\(699\) 0 0
\(700\) −2.28760e14 −0.0514447
\(701\) 9.47724e14 0.211462 0.105731 0.994395i \(-0.466282\pi\)
0.105731 + 0.994395i \(0.466282\pi\)
\(702\) 0 0
\(703\) −9.22280e14 −0.202586
\(704\) 2.78237e14 0.0606408
\(705\) 0 0
\(706\) −3.32135e15 −0.712671
\(707\) 2.66735e15 0.567902
\(708\) 0 0
\(709\) 1.41385e15 0.296380 0.148190 0.988959i \(-0.452655\pi\)
0.148190 + 0.988959i \(0.452655\pi\)
\(710\) −1.17195e15 −0.243774
\(711\) 0 0
\(712\) −2.44306e15 −0.500374
\(713\) −1.86617e15 −0.379278
\(714\) 0 0
\(715\) −1.88148e15 −0.376545
\(716\) 1.00045e15 0.198690
\(717\) 0 0
\(718\) 4.42426e15 0.865280
\(719\) −7.85082e15 −1.52372 −0.761862 0.647739i \(-0.775715\pi\)
−0.761862 + 0.647739i \(0.775715\pi\)
\(720\) 0 0
\(721\) −9.84196e14 −0.188121
\(722\) −3.64436e15 −0.691299
\(723\) 0 0
\(724\) 3.92213e15 0.732756
\(725\) −1.49014e15 −0.276292
\(726\) 0 0
\(727\) −6.17476e15 −1.12767 −0.563833 0.825889i \(-0.690674\pi\)
−0.563833 + 0.825889i \(0.690674\pi\)
\(728\) 1.74167e15 0.315677
\(729\) 0 0
\(730\) 2.31756e15 0.413767
\(731\) −1.11393e15 −0.197384
\(732\) 0 0
\(733\) −7.25819e15 −1.26694 −0.633471 0.773767i \(-0.718370\pi\)
−0.633471 + 0.773767i \(0.718370\pi\)
\(734\) 3.72342e15 0.645081
\(735\) 0 0
\(736\) −1.10224e15 −0.188125
\(737\) −5.51623e15 −0.934483
\(738\) 0 0
\(739\) 1.04737e16 1.74806 0.874030 0.485872i \(-0.161498\pi\)
0.874030 + 0.485872i \(0.161498\pi\)
\(740\) 1.82886e15 0.302974
\(741\) 0 0
\(742\) −1.86945e15 −0.305136
\(743\) −2.62290e15 −0.424956 −0.212478 0.977166i \(-0.568153\pi\)
−0.212478 + 0.977166i \(0.568153\pi\)
\(744\) 0 0
\(745\) −2.06377e15 −0.329460
\(746\) −2.15099e15 −0.340860
\(747\) 0 0
\(748\) 5.09006e14 0.0794812
\(749\) −4.92573e15 −0.763520
\(750\) 0 0
\(751\) 3.09275e15 0.472417 0.236208 0.971702i \(-0.424095\pi\)
0.236208 + 0.971702i \(0.424095\pi\)
\(752\) −5.02107e14 −0.0761374
\(753\) 0 0
\(754\) 1.13452e16 1.69539
\(755\) 5.83173e14 0.0865146
\(756\) 0 0
\(757\) −5.54759e15 −0.811105 −0.405553 0.914072i \(-0.632921\pi\)
−0.405553 + 0.914072i \(0.632921\pi\)
\(758\) −4.25089e15 −0.617020
\(759\) 0 0
\(760\) −1.65247e14 −0.0236406
\(761\) −1.79365e13 −0.00254754 −0.00127377 0.999999i \(-0.500405\pi\)
−0.00127377 + 0.999999i \(0.500405\pi\)
\(762\) 0 0
\(763\) 5.85784e15 0.820074
\(764\) 2.55687e15 0.355382
\(765\) 0 0
\(766\) 8.63391e15 1.18290
\(767\) 1.46794e16 1.99680
\(768\) 0 0
\(769\) −1.07234e16 −1.43794 −0.718968 0.695043i \(-0.755385\pi\)
−0.718968 + 0.695043i \(0.755385\pi\)
\(770\) −5.92781e14 −0.0789215
\(771\) 0 0
\(772\) 5.32269e15 0.698612
\(773\) −6.56995e15 −0.856199 −0.428100 0.903732i \(-0.640817\pi\)
−0.428100 + 0.903732i \(0.640817\pi\)
\(774\) 0 0
\(775\) 5.54786e14 0.0712797
\(776\) 1.35774e15 0.173211
\(777\) 0 0
\(778\) −3.13947e15 −0.394883
\(779\) 1.18459e15 0.147949
\(780\) 0 0
\(781\) −3.03685e15 −0.373975
\(782\) −2.01643e15 −0.246574
\(783\) 0 0
\(784\) −1.52465e15 −0.183836
\(785\) 1.41392e15 0.169295
\(786\) 0 0
\(787\) −1.38290e16 −1.63279 −0.816394 0.577495i \(-0.804030\pi\)
−0.816394 + 0.577495i \(0.804030\pi\)
\(788\) 5.84088e15 0.684833
\(789\) 0 0
\(790\) 2.69897e14 0.0312068
\(791\) 3.03594e15 0.348596
\(792\) 0 0
\(793\) 1.82656e15 0.206839
\(794\) −2.06124e15 −0.231801
\(795\) 0 0
\(796\) −6.55172e14 −0.0726664
\(797\) 5.66909e15 0.624442 0.312221 0.950009i \(-0.398927\pi\)
0.312221 + 0.950009i \(0.398927\pi\)
\(798\) 0 0
\(799\) −9.18555e14 −0.0997925
\(800\) 3.27680e14 0.0353553
\(801\) 0 0
\(802\) −6.58557e15 −0.700865
\(803\) 6.00546e15 0.634761
\(804\) 0 0
\(805\) 2.34831e15 0.244837
\(806\) −4.22387e15 −0.437389
\(807\) 0 0
\(808\) −3.82077e15 −0.390290
\(809\) −1.22726e16 −1.24514 −0.622572 0.782563i \(-0.713912\pi\)
−0.622572 + 0.782563i \(0.713912\pi\)
\(810\) 0 0
\(811\) 2.48630e15 0.248851 0.124426 0.992229i \(-0.460291\pi\)
0.124426 + 0.992229i \(0.460291\pi\)
\(812\) 3.57443e15 0.355344
\(813\) 0 0
\(814\) 4.73908e15 0.464793
\(815\) 4.73959e15 0.461715
\(816\) 0 0
\(817\) 9.37093e14 0.0900661
\(818\) 1.90597e15 0.181959
\(819\) 0 0
\(820\) −2.34900e15 −0.221262
\(821\) 1.90122e16 1.77887 0.889435 0.457062i \(-0.151098\pi\)
0.889435 + 0.457062i \(0.151098\pi\)
\(822\) 0 0
\(823\) 2.42079e15 0.223490 0.111745 0.993737i \(-0.464356\pi\)
0.111745 + 0.993737i \(0.464356\pi\)
\(824\) 1.40978e15 0.129286
\(825\) 0 0
\(826\) 4.62492e15 0.418518
\(827\) 1.83310e16 1.64781 0.823903 0.566731i \(-0.191792\pi\)
0.823903 + 0.566731i \(0.191792\pi\)
\(828\) 0 0
\(829\) −7.71702e15 −0.684541 −0.342271 0.939601i \(-0.611196\pi\)
−0.342271 + 0.939601i \(0.611196\pi\)
\(830\) −3.26587e15 −0.287786
\(831\) 0 0
\(832\) −2.49480e15 −0.216949
\(833\) −2.78919e15 −0.240952
\(834\) 0 0
\(835\) 7.34566e15 0.626261
\(836\) −4.28201e14 −0.0362671
\(837\) 0 0
\(838\) 2.64413e15 0.221025
\(839\) 1.33884e16 1.11183 0.555914 0.831240i \(-0.312368\pi\)
0.555914 + 0.831240i \(0.312368\pi\)
\(840\) 0 0
\(841\) 1.10833e16 0.908428
\(842\) −4.98267e15 −0.405738
\(843\) 0 0
\(844\) 2.52953e15 0.203309
\(845\) 1.12697e16 0.899916
\(846\) 0 0
\(847\) 4.99073e15 0.393374
\(848\) 2.67784e15 0.209704
\(849\) 0 0
\(850\) 5.99458e14 0.0463399
\(851\) −1.87739e16 −1.44192
\(852\) 0 0
\(853\) 3.99518e15 0.302912 0.151456 0.988464i \(-0.451604\pi\)
0.151456 + 0.988464i \(0.451604\pi\)
\(854\) 5.75478e14 0.0433522
\(855\) 0 0
\(856\) 7.05570e15 0.524728
\(857\) −1.50656e16 −1.11324 −0.556622 0.830766i \(-0.687903\pi\)
−0.556622 + 0.830766i \(0.687903\pi\)
\(858\) 0 0
\(859\) −2.66635e16 −1.94516 −0.972579 0.232572i \(-0.925286\pi\)
−0.972579 + 0.232572i \(0.925286\pi\)
\(860\) −1.85823e15 −0.134697
\(861\) 0 0
\(862\) −1.40884e16 −1.00826
\(863\) −1.36614e16 −0.971486 −0.485743 0.874102i \(-0.661451\pi\)
−0.485743 + 0.874102i \(0.661451\pi\)
\(864\) 0 0
\(865\) −2.81597e15 −0.197715
\(866\) 1.02992e16 0.718547
\(867\) 0 0
\(868\) −1.33078e15 −0.0916742
\(869\) 6.99379e14 0.0478744
\(870\) 0 0
\(871\) 4.94611e16 3.34321
\(872\) −8.39088e15 −0.563595
\(873\) 0 0
\(874\) 1.69632e15 0.112511
\(875\) −6.98120e14 −0.0460136
\(876\) 0 0
\(877\) −2.44903e16 −1.59403 −0.797016 0.603958i \(-0.793590\pi\)
−0.797016 + 0.603958i \(0.793590\pi\)
\(878\) 2.09112e16 1.35257
\(879\) 0 0
\(880\) 8.49111e14 0.0542387
\(881\) −9.28368e15 −0.589322 −0.294661 0.955602i \(-0.595207\pi\)
−0.294661 + 0.955602i \(0.595207\pi\)
\(882\) 0 0
\(883\) 1.88185e16 1.17978 0.589890 0.807484i \(-0.299171\pi\)
0.589890 + 0.807484i \(0.299171\pi\)
\(884\) −4.56399e15 −0.284352
\(885\) 0 0
\(886\) −1.76041e16 −1.08325
\(887\) 6.50887e14 0.0398039 0.0199020 0.999802i \(-0.493665\pi\)
0.0199020 + 0.999802i \(0.493665\pi\)
\(888\) 0 0
\(889\) 1.37240e16 0.828937
\(890\) −7.45563e15 −0.447548
\(891\) 0 0
\(892\) −5.39352e15 −0.319790
\(893\) 7.72734e14 0.0455352
\(894\) 0 0
\(895\) 3.05314e15 0.177713
\(896\) −7.86013e14 −0.0454711
\(897\) 0 0
\(898\) −8.19670e14 −0.0468402
\(899\) −8.66867e15 −0.492350
\(900\) 0 0
\(901\) 4.89884e15 0.274857
\(902\) −6.08692e15 −0.339439
\(903\) 0 0
\(904\) −4.34874e15 −0.239573
\(905\) 1.19694e16 0.655397
\(906\) 0 0
\(907\) 2.01411e16 1.08954 0.544770 0.838585i \(-0.316617\pi\)
0.544770 + 0.838585i \(0.316617\pi\)
\(908\) 1.17194e16 0.630133
\(909\) 0 0
\(910\) 5.31515e15 0.282350
\(911\) 4.85179e15 0.256184 0.128092 0.991762i \(-0.459115\pi\)
0.128092 + 0.991762i \(0.459115\pi\)
\(912\) 0 0
\(913\) −8.46279e15 −0.441493
\(914\) 5.56422e14 0.0288536
\(915\) 0 0
\(916\) 3.71197e15 0.190186
\(917\) −6.55283e15 −0.333732
\(918\) 0 0
\(919\) 7.50130e15 0.377486 0.188743 0.982026i \(-0.439559\pi\)
0.188743 + 0.982026i \(0.439559\pi\)
\(920\) −3.36376e15 −0.168264
\(921\) 0 0
\(922\) −2.43782e16 −1.20499
\(923\) 2.72298e16 1.33793
\(924\) 0 0
\(925\) 5.58122e15 0.270988
\(926\) 1.24335e16 0.600111
\(927\) 0 0
\(928\) −5.12008e15 −0.244210
\(929\) 6.04589e15 0.286664 0.143332 0.989675i \(-0.454218\pi\)
0.143332 + 0.989675i \(0.454218\pi\)
\(930\) 0 0
\(931\) 2.34640e15 0.109946
\(932\) −1.47519e16 −0.687165
\(933\) 0 0
\(934\) −3.91094e15 −0.180042
\(935\) 1.55336e15 0.0710901
\(936\) 0 0
\(937\) 1.17484e16 0.531389 0.265694 0.964057i \(-0.414399\pi\)
0.265694 + 0.964057i \(0.414399\pi\)
\(938\) 1.55833e16 0.700717
\(939\) 0 0
\(940\) −1.53231e15 −0.0680994
\(941\) 5.89103e15 0.260284 0.130142 0.991495i \(-0.458457\pi\)
0.130142 + 0.991495i \(0.458457\pi\)
\(942\) 0 0
\(943\) 2.41134e16 1.05304
\(944\) −6.62482e15 −0.287626
\(945\) 0 0
\(946\) −4.81519e15 −0.206639
\(947\) −2.96672e15 −0.126576 −0.0632881 0.997995i \(-0.520159\pi\)
−0.0632881 + 0.997995i \(0.520159\pi\)
\(948\) 0 0
\(949\) −5.38477e16 −2.27093
\(950\) −5.04294e14 −0.0211448
\(951\) 0 0
\(952\) −1.43793e15 −0.0595985
\(953\) −1.10371e15 −0.0454826 −0.0227413 0.999741i \(-0.507239\pi\)
−0.0227413 + 0.999741i \(0.507239\pi\)
\(954\) 0 0
\(955\) 7.80295e15 0.317863
\(956\) 1.36395e16 0.552433
\(957\) 0 0
\(958\) −1.39492e16 −0.558520
\(959\) −6.13577e15 −0.244268
\(960\) 0 0
\(961\) −2.21811e16 −0.872980
\(962\) −4.24928e16 −1.66285
\(963\) 0 0
\(964\) 1.16500e16 0.450714
\(965\) 1.62436e16 0.624858
\(966\) 0 0
\(967\) −1.84533e15 −0.0701826 −0.0350913 0.999384i \(-0.511172\pi\)
−0.0350913 + 0.999384i \(0.511172\pi\)
\(968\) −7.14881e15 −0.270346
\(969\) 0 0
\(970\) 4.14349e15 0.154925
\(971\) 1.46125e16 0.543273 0.271636 0.962400i \(-0.412435\pi\)
0.271636 + 0.962400i \(0.412435\pi\)
\(972\) 0 0
\(973\) −2.29706e16 −0.844405
\(974\) 2.13181e16 0.779245
\(975\) 0 0
\(976\) −8.24326e14 −0.0297937
\(977\) −1.87225e16 −0.672891 −0.336445 0.941703i \(-0.609225\pi\)
−0.336445 + 0.941703i \(0.609225\pi\)
\(978\) 0 0
\(979\) −1.93196e16 −0.686585
\(980\) −4.65285e15 −0.164428
\(981\) 0 0
\(982\) −7.16215e14 −0.0250282
\(983\) −2.79209e16 −0.970253 −0.485126 0.874444i \(-0.661226\pi\)
−0.485126 + 0.874444i \(0.661226\pi\)
\(984\) 0 0
\(985\) 1.78250e16 0.612533
\(986\) −9.36668e15 −0.320083
\(987\) 0 0
\(988\) 3.83945e15 0.129750
\(989\) 1.90754e16 0.641054
\(990\) 0 0
\(991\) 2.46391e16 0.818878 0.409439 0.912337i \(-0.365724\pi\)
0.409439 + 0.912337i \(0.365724\pi\)
\(992\) 1.90623e15 0.0630030
\(993\) 0 0
\(994\) 8.57903e15 0.280423
\(995\) −1.99943e15 −0.0649948
\(996\) 0 0
\(997\) 4.80148e16 1.54366 0.771831 0.635828i \(-0.219341\pi\)
0.771831 + 0.635828i \(0.219341\pi\)
\(998\) −1.56002e15 −0.0498783
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 90.12.a.j.1.1 1
3.2 odd 2 30.12.a.a.1.1 1
12.11 even 2 240.12.a.d.1.1 1
15.2 even 4 150.12.c.g.49.1 2
15.8 even 4 150.12.c.g.49.2 2
15.14 odd 2 150.12.a.h.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.12.a.a.1.1 1 3.2 odd 2
90.12.a.j.1.1 1 1.1 even 1 trivial
150.12.a.h.1.1 1 15.14 odd 2
150.12.c.g.49.1 2 15.2 even 4
150.12.c.g.49.2 2 15.8 even 4
240.12.a.d.1.1 1 12.11 even 2