Properties

Label 90.12.a.j
Level $90$
Weight $12$
Character orbit 90.a
Self dual yes
Analytic conductor $69.151$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [90,12,Mod(1,90)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(90, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("90.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 90.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.1508862504\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 32 q^{2} + 1024 q^{4} + 3125 q^{5} - 22876 q^{7} + 32768 q^{8} + 100000 q^{10} + 259128 q^{11} - 2323462 q^{13} - 732032 q^{14} + 1048576 q^{16} + 1918266 q^{17} - 1613740 q^{19} + 3200000 q^{20} + 8292096 q^{22}+ \cdots - 46528491744 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
32.0000 0 1024.00 3125.00 0 −22876.0 32768.0 0 100000.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 90.12.a.j 1
3.b odd 2 1 30.12.a.a 1
12.b even 2 1 240.12.a.d 1
15.d odd 2 1 150.12.a.h 1
15.e even 4 2 150.12.c.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.12.a.a 1 3.b odd 2 1
90.12.a.j 1 1.a even 1 1 trivial
150.12.a.h 1 15.d odd 2 1
150.12.c.g 2 15.e even 4 2
240.12.a.d 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(90))\):

\( T_{7} + 22876 \) Copy content Toggle raw display
\( T_{11} - 259128 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 32 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 3125 \) Copy content Toggle raw display
$7$ \( T + 22876 \) Copy content Toggle raw display
$11$ \( T - 259128 \) Copy content Toggle raw display
$13$ \( T + 2323462 \) Copy content Toggle raw display
$17$ \( T - 1918266 \) Copy content Toggle raw display
$19$ \( T + 1613740 \) Copy content Toggle raw display
$23$ \( T + 32849208 \) Copy content Toggle raw display
$29$ \( T + 152590290 \) Copy content Toggle raw display
$31$ \( T - 56810072 \) Copy content Toggle raw display
$37$ \( T - 571517354 \) Copy content Toggle raw display
$41$ \( T + 734063082 \) Copy content Toggle raw display
$43$ \( T + 580696612 \) Copy content Toggle raw display
$47$ \( T + 478846584 \) Copy content Toggle raw display
$53$ \( T - 2553787902 \) Copy content Toggle raw display
$59$ \( T + 6317920440 \) Copy content Toggle raw display
$61$ \( T + 786138178 \) Copy content Toggle raw display
$67$ \( T + 21287683396 \) Copy content Toggle raw display
$71$ \( T + 11719480032 \) Copy content Toggle raw display
$73$ \( T - 23175633458 \) Copy content Toggle raw display
$79$ \( T - 2698969640 \) Copy content Toggle raw display
$83$ \( T + 32658710748 \) Copy content Toggle raw display
$89$ \( T + 74556330210 \) Copy content Toggle raw display
$97$ \( T - 41434868834 \) Copy content Toggle raw display
show more
show less