Properties

Label 30.12.a.a.1.1
Level $30$
Weight $12$
Character 30.1
Self dual yes
Analytic conductor $23.050$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [30,12,Mod(1,30)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(30, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("30.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 30.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0502954168\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 30.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-32.0000 q^{2} -243.000 q^{3} +1024.00 q^{4} -3125.00 q^{5} +7776.00 q^{6} -22876.0 q^{7} -32768.0 q^{8} +59049.0 q^{9} +100000. q^{10} -259128. q^{11} -248832. q^{12} -2.32346e6 q^{13} +732032. q^{14} +759375. q^{15} +1.04858e6 q^{16} -1.91827e6 q^{17} -1.88957e6 q^{18} -1.61374e6 q^{19} -3.20000e6 q^{20} +5.55887e6 q^{21} +8.29210e6 q^{22} +3.28492e7 q^{23} +7.96262e6 q^{24} +9.76562e6 q^{25} +7.43508e7 q^{26} -1.43489e7 q^{27} -2.34250e7 q^{28} +1.52590e8 q^{29} -2.43000e7 q^{30} +5.68101e7 q^{31} -3.35544e7 q^{32} +6.29681e7 q^{33} +6.13845e7 q^{34} +7.14875e7 q^{35} +6.04662e7 q^{36} +5.71517e8 q^{37} +5.16397e7 q^{38} +5.64601e8 q^{39} +1.02400e8 q^{40} +7.34063e8 q^{41} -1.77884e8 q^{42} -5.80697e8 q^{43} -2.65347e8 q^{44} -1.84528e8 q^{45} -1.05117e9 q^{46} +4.78847e8 q^{47} -2.54804e8 q^{48} -1.45402e9 q^{49} -3.12500e8 q^{50} +4.66139e8 q^{51} -2.37923e9 q^{52} -2.55379e9 q^{53} +4.59165e8 q^{54} +8.09775e8 q^{55} +7.49601e8 q^{56} +3.92139e8 q^{57} -4.88289e9 q^{58} +6.31792e9 q^{59} +7.77600e8 q^{60} -7.86138e8 q^{61} -1.81792e9 q^{62} -1.35080e9 q^{63} +1.07374e9 q^{64} +7.26082e9 q^{65} -2.01498e9 q^{66} -2.12877e10 q^{67} -1.96430e9 q^{68} -7.98236e9 q^{69} -2.28760e9 q^{70} +1.17195e10 q^{71} -1.93492e9 q^{72} +2.31756e10 q^{73} -1.82886e10 q^{74} -2.37305e9 q^{75} -1.65247e9 q^{76} +5.92781e9 q^{77} -1.80672e10 q^{78} +2.69897e9 q^{79} -3.27680e9 q^{80} +3.48678e9 q^{81} -2.34900e10 q^{82} +3.26587e10 q^{83} +5.69228e9 q^{84} +5.99458e9 q^{85} +1.85823e10 q^{86} -3.70794e10 q^{87} +8.49111e9 q^{88} +7.45563e10 q^{89} +5.90490e9 q^{90} +5.31515e10 q^{91} +3.36376e10 q^{92} -1.38048e10 q^{93} -1.53231e10 q^{94} +5.04294e9 q^{95} +8.15373e9 q^{96} +4.14349e10 q^{97} +4.65285e10 q^{98} -1.53012e10 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −32.0000 −0.707107
\(3\) −243.000 −0.577350
\(4\) 1024.00 0.500000
\(5\) −3125.00 −0.447214
\(6\) 7776.00 0.408248
\(7\) −22876.0 −0.514447 −0.257224 0.966352i \(-0.582808\pi\)
−0.257224 + 0.966352i \(0.582808\pi\)
\(8\) −32768.0 −0.353553
\(9\) 59049.0 0.333333
\(10\) 100000. 0.316228
\(11\) −259128. −0.485126 −0.242563 0.970136i \(-0.577988\pi\)
−0.242563 + 0.970136i \(0.577988\pi\)
\(12\) −248832. −0.288675
\(13\) −2.32346e6 −1.73559 −0.867795 0.496922i \(-0.834463\pi\)
−0.867795 + 0.496922i \(0.834463\pi\)
\(14\) 732032. 0.363769
\(15\) 759375. 0.258199
\(16\) 1.04858e6 0.250000
\(17\) −1.91827e6 −0.327672 −0.163836 0.986488i \(-0.552387\pi\)
−0.163836 + 0.986488i \(0.552387\pi\)
\(18\) −1.88957e6 −0.235702
\(19\) −1.61374e6 −0.149516 −0.0747582 0.997202i \(-0.523818\pi\)
−0.0747582 + 0.997202i \(0.523818\pi\)
\(20\) −3.20000e6 −0.223607
\(21\) 5.55887e6 0.297016
\(22\) 8.29210e6 0.343036
\(23\) 3.28492e7 1.06420 0.532098 0.846683i \(-0.321404\pi\)
0.532098 + 0.846683i \(0.321404\pi\)
\(24\) 7.96262e6 0.204124
\(25\) 9.76562e6 0.200000
\(26\) 7.43508e7 1.22725
\(27\) −1.43489e7 −0.192450
\(28\) −2.34250e7 −0.257224
\(29\) 1.52590e8 1.38146 0.690729 0.723113i \(-0.257290\pi\)
0.690729 + 0.723113i \(0.257290\pi\)
\(30\) −2.43000e7 −0.182574
\(31\) 5.68101e7 0.356399 0.178199 0.983994i \(-0.442973\pi\)
0.178199 + 0.983994i \(0.442973\pi\)
\(32\) −3.35544e7 −0.176777
\(33\) 6.29681e7 0.280088
\(34\) 6.13845e7 0.231699
\(35\) 7.14875e7 0.230068
\(36\) 6.04662e7 0.166667
\(37\) 5.71517e8 1.35494 0.677470 0.735551i \(-0.263076\pi\)
0.677470 + 0.735551i \(0.263076\pi\)
\(38\) 5.16397e7 0.105724
\(39\) 5.64601e8 1.00204
\(40\) 1.02400e8 0.158114
\(41\) 7.34063e8 0.989515 0.494757 0.869031i \(-0.335257\pi\)
0.494757 + 0.869031i \(0.335257\pi\)
\(42\) −1.77884e8 −0.210022
\(43\) −5.80697e8 −0.602383 −0.301192 0.953564i \(-0.597384\pi\)
−0.301192 + 0.953564i \(0.597384\pi\)
\(44\) −2.65347e8 −0.242563
\(45\) −1.84528e8 −0.149071
\(46\) −1.05117e9 −0.752501
\(47\) 4.78847e8 0.304550 0.152275 0.988338i \(-0.451340\pi\)
0.152275 + 0.988338i \(0.451340\pi\)
\(48\) −2.54804e8 −0.144338
\(49\) −1.45402e9 −0.735344
\(50\) −3.12500e8 −0.141421
\(51\) 4.66139e8 0.189182
\(52\) −2.37923e9 −0.867795
\(53\) −2.55379e9 −0.838818 −0.419409 0.907797i \(-0.637763\pi\)
−0.419409 + 0.907797i \(0.637763\pi\)
\(54\) 4.59165e8 0.136083
\(55\) 8.09775e8 0.216955
\(56\) 7.49601e8 0.181885
\(57\) 3.92139e8 0.0863233
\(58\) −4.88289e9 −0.976839
\(59\) 6.31792e9 1.15050 0.575252 0.817976i \(-0.304904\pi\)
0.575252 + 0.817976i \(0.304904\pi\)
\(60\) 7.77600e8 0.129099
\(61\) −7.86138e8 −0.119175 −0.0595874 0.998223i \(-0.518979\pi\)
−0.0595874 + 0.998223i \(0.518979\pi\)
\(62\) −1.81792e9 −0.252012
\(63\) −1.35080e9 −0.171482
\(64\) 1.07374e9 0.125000
\(65\) 7.26082e9 0.776179
\(66\) −2.01498e9 −0.198052
\(67\) −2.12877e10 −1.92627 −0.963135 0.269020i \(-0.913300\pi\)
−0.963135 + 0.269020i \(0.913300\pi\)
\(68\) −1.96430e9 −0.163836
\(69\) −7.98236e9 −0.614414
\(70\) −2.28760e9 −0.162683
\(71\) 1.17195e10 0.770881 0.385441 0.922733i \(-0.374049\pi\)
0.385441 + 0.922733i \(0.374049\pi\)
\(72\) −1.93492e9 −0.117851
\(73\) 2.31756e10 1.30845 0.654223 0.756302i \(-0.272996\pi\)
0.654223 + 0.756302i \(0.272996\pi\)
\(74\) −1.82886e10 −0.958087
\(75\) −2.37305e9 −0.115470
\(76\) −1.65247e9 −0.0747582
\(77\) 5.92781e9 0.249572
\(78\) −1.80672e10 −0.708552
\(79\) 2.69897e9 0.0986845 0.0493423 0.998782i \(-0.484287\pi\)
0.0493423 + 0.998782i \(0.484287\pi\)
\(80\) −3.27680e9 −0.111803
\(81\) 3.48678e9 0.111111
\(82\) −2.34900e10 −0.699692
\(83\) 3.26587e10 0.910059 0.455029 0.890476i \(-0.349629\pi\)
0.455029 + 0.890476i \(0.349629\pi\)
\(84\) 5.69228e9 0.148508
\(85\) 5.99458e9 0.146540
\(86\) 1.85823e10 0.425949
\(87\) −3.70794e10 −0.797586
\(88\) 8.49111e9 0.171518
\(89\) 7.45563e10 1.41527 0.707635 0.706578i \(-0.249762\pi\)
0.707635 + 0.706578i \(0.249762\pi\)
\(90\) 5.90490e9 0.105409
\(91\) 5.31515e10 0.892870
\(92\) 3.36376e10 0.532098
\(93\) −1.38048e10 −0.205767
\(94\) −1.53231e10 −0.215349
\(95\) 5.04294e9 0.0668658
\(96\) 8.15373e9 0.102062
\(97\) 4.14349e10 0.489916 0.244958 0.969534i \(-0.421226\pi\)
0.244958 + 0.969534i \(0.421226\pi\)
\(98\) 4.65285e10 0.519967
\(99\) −1.53012e10 −0.161709
\(100\) 1.00000e10 0.100000
\(101\) 1.16600e11 1.10391 0.551954 0.833875i \(-0.313882\pi\)
0.551954 + 0.833875i \(0.313882\pi\)
\(102\) −1.49164e10 −0.133772
\(103\) 4.30231e10 0.365676 0.182838 0.983143i \(-0.441472\pi\)
0.182838 + 0.983143i \(0.441472\pi\)
\(104\) 7.61352e10 0.613624
\(105\) −1.73715e10 −0.132830
\(106\) 8.17212e10 0.593134
\(107\) −2.15323e11 −1.48416 −0.742078 0.670313i \(-0.766160\pi\)
−0.742078 + 0.670313i \(0.766160\pi\)
\(108\) −1.46933e10 −0.0962250
\(109\) −2.56069e11 −1.59409 −0.797044 0.603922i \(-0.793604\pi\)
−0.797044 + 0.603922i \(0.793604\pi\)
\(110\) −2.59128e10 −0.153410
\(111\) −1.38879e11 −0.782275
\(112\) −2.39872e10 −0.128612
\(113\) 1.32713e11 0.677613 0.338807 0.940856i \(-0.389977\pi\)
0.338807 + 0.940856i \(0.389977\pi\)
\(114\) −1.25484e10 −0.0610398
\(115\) −1.02654e11 −0.475923
\(116\) 1.56252e11 0.690729
\(117\) −1.37198e11 −0.578530
\(118\) −2.02173e11 −0.813529
\(119\) 4.38823e10 0.168570
\(120\) −2.48832e10 −0.0912871
\(121\) −2.18164e11 −0.764653
\(122\) 2.51564e10 0.0842694
\(123\) −1.78377e11 −0.571296
\(124\) 5.81735e10 0.178199
\(125\) −3.05176e10 −0.0894427
\(126\) 4.32258e10 0.121256
\(127\) −5.99930e11 −1.61132 −0.805658 0.592382i \(-0.798188\pi\)
−0.805658 + 0.592382i \(0.798188\pi\)
\(128\) −3.43597e10 −0.0883883
\(129\) 1.41109e11 0.347786
\(130\) −2.32346e11 −0.548842
\(131\) −2.86450e11 −0.648719 −0.324360 0.945934i \(-0.605149\pi\)
−0.324360 + 0.945934i \(0.605149\pi\)
\(132\) 6.44793e10 0.140044
\(133\) 3.69159e10 0.0769183
\(134\) 6.81206e11 1.36208
\(135\) 4.48403e10 0.0860663
\(136\) 6.28577e10 0.115850
\(137\) −2.68219e11 −0.474817 −0.237408 0.971410i \(-0.576298\pi\)
−0.237408 + 0.971410i \(0.576298\pi\)
\(138\) 2.55435e11 0.434456
\(139\) 1.00413e12 1.64138 0.820692 0.571371i \(-0.193588\pi\)
0.820692 + 0.571371i \(0.193588\pi\)
\(140\) 7.32032e10 0.115034
\(141\) −1.16360e11 −0.175832
\(142\) −3.75023e11 −0.545095
\(143\) 6.02074e11 0.841980
\(144\) 6.19174e10 0.0833333
\(145\) −4.76845e11 −0.617807
\(146\) −7.41620e11 −0.925211
\(147\) 3.53326e11 0.424551
\(148\) 5.85234e11 0.677470
\(149\) 6.60408e11 0.736695 0.368348 0.929688i \(-0.379924\pi\)
0.368348 + 0.929688i \(0.379924\pi\)
\(150\) 7.59375e10 0.0816497
\(151\) 1.86615e11 0.193453 0.0967263 0.995311i \(-0.469163\pi\)
0.0967263 + 0.995311i \(0.469163\pi\)
\(152\) 5.28790e10 0.0528620
\(153\) −1.13272e11 −0.109224
\(154\) −1.89690e11 −0.176474
\(155\) −1.77531e11 −0.159386
\(156\) 5.78152e11 0.501022
\(157\) 4.52456e11 0.378554 0.189277 0.981924i \(-0.439386\pi\)
0.189277 + 0.981924i \(0.439386\pi\)
\(158\) −8.63670e10 −0.0697805
\(159\) 6.20570e11 0.484292
\(160\) 1.04858e11 0.0790569
\(161\) −7.51458e11 −0.547473
\(162\) −1.11577e11 −0.0785674
\(163\) 1.51667e12 1.03243 0.516213 0.856460i \(-0.327341\pi\)
0.516213 + 0.856460i \(0.327341\pi\)
\(164\) 7.51681e11 0.494757
\(165\) −1.96775e11 −0.125259
\(166\) −1.04508e12 −0.643509
\(167\) −2.35061e12 −1.40036 −0.700181 0.713965i \(-0.746897\pi\)
−0.700181 + 0.713965i \(0.746897\pi\)
\(168\) −1.82153e11 −0.105011
\(169\) 3.60632e12 2.01227
\(170\) −1.91827e11 −0.103619
\(171\) −9.52897e10 −0.0498388
\(172\) −5.94633e11 −0.301192
\(173\) 9.01111e11 0.442104 0.221052 0.975262i \(-0.429051\pi\)
0.221052 + 0.975262i \(0.429051\pi\)
\(174\) 1.18654e12 0.563978
\(175\) −2.23398e11 −0.102889
\(176\) −2.71715e11 −0.121282
\(177\) −1.53525e12 −0.664244
\(178\) −2.38580e12 −1.00075
\(179\) −9.77006e11 −0.397379 −0.198690 0.980062i \(-0.563669\pi\)
−0.198690 + 0.980062i \(0.563669\pi\)
\(180\) −1.88957e11 −0.0745356
\(181\) 3.83020e12 1.46551 0.732756 0.680491i \(-0.238234\pi\)
0.732756 + 0.680491i \(0.238234\pi\)
\(182\) −1.70085e12 −0.631354
\(183\) 1.91032e11 0.0688057
\(184\) −1.07640e12 −0.376250
\(185\) −1.78599e12 −0.605947
\(186\) 4.41755e11 0.145499
\(187\) 4.97076e11 0.158962
\(188\) 4.90339e11 0.152275
\(189\) 3.28246e11 0.0990054
\(190\) −1.61374e11 −0.0472812
\(191\) −2.49694e12 −0.710764 −0.355382 0.934721i \(-0.615649\pi\)
−0.355382 + 0.934721i \(0.615649\pi\)
\(192\) −2.60919e11 −0.0721688
\(193\) 5.19794e12 1.39722 0.698612 0.715500i \(-0.253801\pi\)
0.698612 + 0.715500i \(0.253801\pi\)
\(194\) −1.32592e12 −0.346423
\(195\) −1.76438e12 −0.448127
\(196\) −1.48891e12 −0.367672
\(197\) −5.70399e12 −1.36967 −0.684833 0.728700i \(-0.740125\pi\)
−0.684833 + 0.728700i \(0.740125\pi\)
\(198\) 4.89640e11 0.114345
\(199\) −6.39817e11 −0.145333 −0.0726664 0.997356i \(-0.523151\pi\)
−0.0726664 + 0.997356i \(0.523151\pi\)
\(200\) −3.20000e11 −0.0707107
\(201\) 5.17291e12 1.11213
\(202\) −3.73122e12 −0.780581
\(203\) −3.49066e12 −0.710688
\(204\) 4.77326e11 0.0945909
\(205\) −2.29395e12 −0.442524
\(206\) −1.37674e12 −0.258572
\(207\) 1.93971e12 0.354732
\(208\) −2.43633e12 −0.433897
\(209\) 4.18165e11 0.0725343
\(210\) 5.55887e11 0.0939248
\(211\) 2.47025e12 0.406618 0.203309 0.979115i \(-0.434830\pi\)
0.203309 + 0.979115i \(0.434830\pi\)
\(212\) −2.61508e12 −0.419409
\(213\) −2.84783e12 −0.445068
\(214\) 6.89034e12 1.04946
\(215\) 1.81468e12 0.269394
\(216\) 4.70185e11 0.0680414
\(217\) −1.29959e12 −0.183348
\(218\) 8.19422e12 1.12719
\(219\) −5.63168e12 −0.755432
\(220\) 8.29210e11 0.108477
\(221\) 4.45702e12 0.568705
\(222\) 4.44412e12 0.553152
\(223\) −5.26711e12 −0.639581 −0.319790 0.947488i \(-0.603613\pi\)
−0.319790 + 0.947488i \(0.603613\pi\)
\(224\) 7.67591e11 0.0909423
\(225\) 5.76650e11 0.0666667
\(226\) −4.24682e12 −0.479145
\(227\) −1.14447e13 −1.26027 −0.630133 0.776488i \(-0.716999\pi\)
−0.630133 + 0.776488i \(0.716999\pi\)
\(228\) 4.01550e11 0.0431617
\(229\) 3.62497e12 0.380372 0.190186 0.981748i \(-0.439091\pi\)
0.190186 + 0.981748i \(0.439091\pi\)
\(230\) 3.28492e12 0.336528
\(231\) −1.44046e12 −0.144090
\(232\) −5.00008e12 −0.488419
\(233\) 1.44062e13 1.37433 0.687165 0.726501i \(-0.258855\pi\)
0.687165 + 0.726501i \(0.258855\pi\)
\(234\) 4.39034e12 0.409082
\(235\) −1.49640e12 −0.136199
\(236\) 6.46955e12 0.575252
\(237\) −6.55850e11 −0.0569755
\(238\) −1.40423e12 −0.119197
\(239\) −1.33198e13 −1.10487 −0.552433 0.833557i \(-0.686301\pi\)
−0.552433 + 0.833557i \(0.686301\pi\)
\(240\) 7.96262e11 0.0645497
\(241\) 1.13769e13 0.901428 0.450714 0.892668i \(-0.351169\pi\)
0.450714 + 0.892668i \(0.351169\pi\)
\(242\) 6.98126e12 0.540691
\(243\) −8.47289e11 −0.0641500
\(244\) −8.05005e11 −0.0595874
\(245\) 4.54380e12 0.328856
\(246\) 5.70807e12 0.403968
\(247\) 3.74946e12 0.259499
\(248\) −1.86155e12 −0.126006
\(249\) −7.93607e12 −0.525423
\(250\) 9.76562e11 0.0632456
\(251\) −2.83662e12 −0.179719 −0.0898597 0.995954i \(-0.528642\pi\)
−0.0898597 + 0.995954i \(0.528642\pi\)
\(252\) −1.38322e12 −0.0857412
\(253\) −8.51215e12 −0.516269
\(254\) 1.91978e13 1.13937
\(255\) −1.45668e12 −0.0846046
\(256\) 1.09951e12 0.0625000
\(257\) 3.01443e13 1.67715 0.838576 0.544784i \(-0.183388\pi\)
0.838576 + 0.544784i \(0.183388\pi\)
\(258\) −4.51550e12 −0.245922
\(259\) −1.30740e13 −0.697045
\(260\) 7.43508e12 0.388090
\(261\) 9.01030e12 0.460486
\(262\) 9.16641e12 0.458714
\(263\) 3.80917e13 1.86670 0.933349 0.358971i \(-0.116872\pi\)
0.933349 + 0.358971i \(0.116872\pi\)
\(264\) −2.06334e12 −0.0990259
\(265\) 7.98059e12 0.375131
\(266\) −1.18131e12 −0.0543894
\(267\) −1.81172e13 −0.817107
\(268\) −2.17986e13 −0.963135
\(269\) 2.00988e12 0.0870026 0.0435013 0.999053i \(-0.486149\pi\)
0.0435013 + 0.999053i \(0.486149\pi\)
\(270\) −1.43489e12 −0.0608581
\(271\) −3.06081e13 −1.27205 −0.636027 0.771667i \(-0.719423\pi\)
−0.636027 + 0.771667i \(0.719423\pi\)
\(272\) −2.01145e12 −0.0819181
\(273\) −1.29158e13 −0.515498
\(274\) 8.58300e12 0.335746
\(275\) −2.53055e12 −0.0970252
\(276\) −8.17393e12 −0.307207
\(277\) 2.77790e13 1.02348 0.511738 0.859142i \(-0.329002\pi\)
0.511738 + 0.859142i \(0.329002\pi\)
\(278\) −3.21323e13 −1.16063
\(279\) 3.35458e12 0.118800
\(280\) −2.34250e12 −0.0813413
\(281\) −3.95175e13 −1.34557 −0.672783 0.739840i \(-0.734901\pi\)
−0.672783 + 0.739840i \(0.734901\pi\)
\(282\) 3.72351e12 0.124332
\(283\) −3.57563e13 −1.17092 −0.585460 0.810701i \(-0.699086\pi\)
−0.585460 + 0.810701i \(0.699086\pi\)
\(284\) 1.20007e13 0.385441
\(285\) −1.22543e12 −0.0386050
\(286\) −1.92664e13 −0.595370
\(287\) −1.67924e13 −0.509053
\(288\) −1.98136e12 −0.0589256
\(289\) −3.05922e13 −0.892631
\(290\) 1.52590e13 0.436856
\(291\) −1.00687e13 −0.282853
\(292\) 2.37318e13 0.654223
\(293\) 1.16731e13 0.315801 0.157901 0.987455i \(-0.449527\pi\)
0.157901 + 0.987455i \(0.449527\pi\)
\(294\) −1.13064e13 −0.300203
\(295\) −1.97435e13 −0.514521
\(296\) −1.87275e13 −0.479043
\(297\) 3.71820e12 0.0933625
\(298\) −2.11331e13 −0.520922
\(299\) −7.63239e13 −1.84701
\(300\) −2.43000e12 −0.0577350
\(301\) 1.32840e13 0.309894
\(302\) −5.97169e12 −0.136792
\(303\) −2.83339e13 −0.637342
\(304\) −1.69213e12 −0.0373791
\(305\) 2.45668e12 0.0532966
\(306\) 3.62469e12 0.0772331
\(307\) 8.98114e13 1.87962 0.939811 0.341695i \(-0.111001\pi\)
0.939811 + 0.341695i \(0.111001\pi\)
\(308\) 6.07008e12 0.124786
\(309\) −1.04546e13 −0.211123
\(310\) 5.68101e12 0.112703
\(311\) 6.75879e13 1.31731 0.658653 0.752446i \(-0.271126\pi\)
0.658653 + 0.752446i \(0.271126\pi\)
\(312\) −1.85009e13 −0.354276
\(313\) 9.87171e13 1.85737 0.928685 0.370869i \(-0.120940\pi\)
0.928685 + 0.370869i \(0.120940\pi\)
\(314\) −1.44786e13 −0.267678
\(315\) 4.22127e12 0.0766893
\(316\) 2.76374e12 0.0493423
\(317\) 1.10523e14 1.93921 0.969605 0.244674i \(-0.0786811\pi\)
0.969605 + 0.244674i \(0.0786811\pi\)
\(318\) −1.98583e13 −0.342446
\(319\) −3.95404e13 −0.670182
\(320\) −3.35544e12 −0.0559017
\(321\) 5.23235e13 0.856878
\(322\) 2.40467e13 0.387122
\(323\) 3.09558e12 0.0489924
\(324\) 3.57047e12 0.0555556
\(325\) −2.26901e13 −0.347118
\(326\) −4.85334e13 −0.730036
\(327\) 6.22249e13 0.920347
\(328\) −2.40538e13 −0.349846
\(329\) −1.09541e13 −0.156675
\(330\) 6.29681e12 0.0885715
\(331\) −5.00155e13 −0.691912 −0.345956 0.938251i \(-0.612445\pi\)
−0.345956 + 0.938251i \(0.612445\pi\)
\(332\) 3.34425e13 0.455029
\(333\) 3.37475e13 0.451647
\(334\) 7.52196e13 0.990205
\(335\) 6.65240e13 0.861454
\(336\) 5.82890e12 0.0742541
\(337\) −3.62478e12 −0.0454274 −0.0227137 0.999742i \(-0.507231\pi\)
−0.0227137 + 0.999742i \(0.507231\pi\)
\(338\) −1.15402e14 −1.42289
\(339\) −3.22493e13 −0.391220
\(340\) 6.13845e12 0.0732698
\(341\) −1.47211e13 −0.172898
\(342\) 3.04927e12 0.0352413
\(343\) 7.84954e13 0.892743
\(344\) 1.90283e13 0.212975
\(345\) 2.49449e13 0.274774
\(346\) −2.88355e13 −0.312615
\(347\) 6.56058e12 0.0700051 0.0350026 0.999387i \(-0.488856\pi\)
0.0350026 + 0.999387i \(0.488856\pi\)
\(348\) −3.79693e13 −0.398793
\(349\) −8.14353e13 −0.841924 −0.420962 0.907078i \(-0.638307\pi\)
−0.420962 + 0.907078i \(0.638307\pi\)
\(350\) 7.14875e12 0.0727538
\(351\) 3.33391e13 0.334014
\(352\) 8.69489e12 0.0857590
\(353\) 1.03792e14 1.00787 0.503934 0.863742i \(-0.331885\pi\)
0.503934 + 0.863742i \(0.331885\pi\)
\(354\) 4.91281e13 0.469691
\(355\) −3.66234e13 −0.344749
\(356\) 7.63457e13 0.707635
\(357\) −1.06634e13 −0.0973240
\(358\) 3.12642e13 0.280990
\(359\) −1.38258e14 −1.22369 −0.611845 0.790978i \(-0.709572\pi\)
−0.611845 + 0.790978i \(0.709572\pi\)
\(360\) 6.04662e12 0.0527046
\(361\) −1.13886e14 −0.977645
\(362\) −1.22566e14 −1.03627
\(363\) 5.30139e13 0.441472
\(364\) 5.44272e13 0.446435
\(365\) −7.24239e13 −0.585155
\(366\) −6.11301e12 −0.0486529
\(367\) 1.16357e14 0.912282 0.456141 0.889908i \(-0.349231\pi\)
0.456141 + 0.889908i \(0.349231\pi\)
\(368\) 3.44449e13 0.266049
\(369\) 4.33457e13 0.329838
\(370\) 5.71517e13 0.428470
\(371\) 5.84205e13 0.431527
\(372\) −1.41362e13 −0.102883
\(373\) −6.72186e13 −0.482049 −0.241024 0.970519i \(-0.577483\pi\)
−0.241024 + 0.970519i \(0.577483\pi\)
\(374\) −1.59064e13 −0.112403
\(375\) 7.41577e12 0.0516398
\(376\) −1.56908e13 −0.107675
\(377\) −3.54538e14 −2.39765
\(378\) −1.05039e13 −0.0700074
\(379\) −1.32840e14 −0.872598 −0.436299 0.899802i \(-0.643711\pi\)
−0.436299 + 0.899802i \(0.643711\pi\)
\(380\) 5.16397e12 0.0334329
\(381\) 1.45783e14 0.930293
\(382\) 7.99022e13 0.502586
\(383\) −2.69810e14 −1.67288 −0.836439 0.548060i \(-0.815367\pi\)
−0.836439 + 0.548060i \(0.815367\pi\)
\(384\) 8.34942e12 0.0510310
\(385\) −1.85244e13 −0.111612
\(386\) −1.66334e14 −0.987987
\(387\) −3.42896e13 −0.200794
\(388\) 4.24293e13 0.244958
\(389\) 9.81084e13 0.558449 0.279224 0.960226i \(-0.409923\pi\)
0.279224 + 0.960226i \(0.409923\pi\)
\(390\) 5.64601e13 0.316874
\(391\) −6.30135e13 −0.348708
\(392\) 4.76452e13 0.259983
\(393\) 6.96074e13 0.374538
\(394\) 1.82528e14 0.968500
\(395\) −8.43428e12 −0.0441331
\(396\) −1.56685e13 −0.0808543
\(397\) −6.44136e13 −0.327816 −0.163908 0.986476i \(-0.552410\pi\)
−0.163908 + 0.986476i \(0.552410\pi\)
\(398\) 2.04741e13 0.102766
\(399\) −8.97057e12 −0.0444088
\(400\) 1.02400e13 0.0500000
\(401\) 2.05799e14 0.991172 0.495586 0.868559i \(-0.334953\pi\)
0.495586 + 0.868559i \(0.334953\pi\)
\(402\) −1.65533e14 −0.786396
\(403\) −1.31996e14 −0.618562
\(404\) 1.19399e14 0.551954
\(405\) −1.08962e13 −0.0496904
\(406\) 1.11701e14 0.502532
\(407\) −1.48096e14 −0.657316
\(408\) −1.52744e13 −0.0668858
\(409\) 5.95615e13 0.257328 0.128664 0.991688i \(-0.458931\pi\)
0.128664 + 0.991688i \(0.458931\pi\)
\(410\) 7.34063e13 0.312912
\(411\) 6.51772e13 0.274136
\(412\) 4.40556e13 0.182838
\(413\) −1.44529e14 −0.591874
\(414\) −6.20708e13 −0.250834
\(415\) −1.02058e14 −0.406991
\(416\) 7.79624e13 0.306812
\(417\) −2.44004e14 −0.947653
\(418\) −1.33813e13 −0.0512895
\(419\) −8.26291e13 −0.312576 −0.156288 0.987712i \(-0.549953\pi\)
−0.156288 + 0.987712i \(0.549953\pi\)
\(420\) −1.77884e13 −0.0664149
\(421\) −1.55708e14 −0.573800 −0.286900 0.957961i \(-0.592625\pi\)
−0.286900 + 0.957961i \(0.592625\pi\)
\(422\) −7.90479e13 −0.287523
\(423\) 2.82754e13 0.101517
\(424\) 8.36825e13 0.296567
\(425\) −1.87331e13 −0.0655345
\(426\) 9.11307e13 0.314711
\(427\) 1.79837e13 0.0613092
\(428\) −2.20491e14 −0.742078
\(429\) −1.46304e14 −0.486117
\(430\) −5.80697e13 −0.190490
\(431\) 4.40261e14 1.42589 0.712944 0.701221i \(-0.247361\pi\)
0.712944 + 0.701221i \(0.247361\pi\)
\(432\) −1.50459e13 −0.0481125
\(433\) 3.21850e14 1.01618 0.508089 0.861304i \(-0.330352\pi\)
0.508089 + 0.861304i \(0.330352\pi\)
\(434\) 4.15868e13 0.129647
\(435\) 1.15873e14 0.356691
\(436\) −2.62215e14 −0.797044
\(437\) −5.30101e13 −0.159115
\(438\) 1.80214e14 0.534171
\(439\) 6.53476e14 1.91282 0.956411 0.292025i \(-0.0943289\pi\)
0.956411 + 0.292025i \(0.0943289\pi\)
\(440\) −2.65347e13 −0.0767052
\(441\) −8.58582e13 −0.245115
\(442\) −1.42625e14 −0.402135
\(443\) 5.50129e14 1.53195 0.765974 0.642872i \(-0.222257\pi\)
0.765974 + 0.642872i \(0.222257\pi\)
\(444\) −1.42212e14 −0.391137
\(445\) −2.32989e14 −0.632928
\(446\) 1.68547e14 0.452252
\(447\) −1.60479e14 −0.425331
\(448\) −2.45629e13 −0.0643059
\(449\) 2.56147e13 0.0662421 0.0331210 0.999451i \(-0.489455\pi\)
0.0331210 + 0.999451i \(0.489455\pi\)
\(450\) −1.84528e13 −0.0471405
\(451\) −1.90216e14 −0.480039
\(452\) 1.35898e14 0.338807
\(453\) −4.53476e13 −0.111690
\(454\) 3.66230e14 0.891142
\(455\) −1.66098e14 −0.399303
\(456\) −1.28496e13 −0.0305199
\(457\) 1.73882e13 0.0408052 0.0204026 0.999792i \(-0.493505\pi\)
0.0204026 + 0.999792i \(0.493505\pi\)
\(458\) −1.15999e14 −0.268964
\(459\) 2.75250e13 0.0630606
\(460\) −1.05117e14 −0.237962
\(461\) 7.61820e14 1.70411 0.852055 0.523453i \(-0.175356\pi\)
0.852055 + 0.523453i \(0.175356\pi\)
\(462\) 4.60947e13 0.101887
\(463\) 3.88545e14 0.848684 0.424342 0.905502i \(-0.360505\pi\)
0.424342 + 0.905502i \(0.360505\pi\)
\(464\) 1.60003e14 0.345365
\(465\) 4.31401e13 0.0920217
\(466\) −4.60998e14 −0.971799
\(467\) 1.22217e14 0.254618 0.127309 0.991863i \(-0.459366\pi\)
0.127309 + 0.991863i \(0.459366\pi\)
\(468\) −1.40491e14 −0.289265
\(469\) 4.86977e14 0.990964
\(470\) 4.78847e13 0.0963071
\(471\) −1.09947e14 −0.218558
\(472\) −2.07026e14 −0.406765
\(473\) 1.50475e14 0.292232
\(474\) 2.09872e13 0.0402878
\(475\) −1.57592e13 −0.0299033
\(476\) 4.49354e13 0.0842851
\(477\) −1.50799e14 −0.279606
\(478\) 4.26234e14 0.781259
\(479\) 4.35912e14 0.789866 0.394933 0.918710i \(-0.370768\pi\)
0.394933 + 0.918710i \(0.370768\pi\)
\(480\) −2.54804e13 −0.0456435
\(481\) −1.32790e15 −2.35162
\(482\) −3.64061e14 −0.637406
\(483\) 1.82604e14 0.316084
\(484\) −2.23400e14 −0.382326
\(485\) −1.29484e14 −0.219097
\(486\) 2.71132e13 0.0453609
\(487\) 6.66191e14 1.10202 0.551010 0.834499i \(-0.314243\pi\)
0.551010 + 0.834499i \(0.314243\pi\)
\(488\) 2.57602e13 0.0421347
\(489\) −3.68551e14 −0.596072
\(490\) −1.45402e14 −0.232536
\(491\) 2.23817e13 0.0353953 0.0176976 0.999843i \(-0.494366\pi\)
0.0176976 + 0.999843i \(0.494366\pi\)
\(492\) −1.82658e14 −0.285648
\(493\) −2.92709e14 −0.452666
\(494\) −1.19983e14 −0.183494
\(495\) 4.78164e13 0.0723183
\(496\) 5.95697e13 0.0890997
\(497\) −2.68095e14 −0.396578
\(498\) 2.53954e14 0.371530
\(499\) −4.87506e13 −0.0705386 −0.0352693 0.999378i \(-0.511229\pi\)
−0.0352693 + 0.999378i \(0.511229\pi\)
\(500\) −3.12500e13 −0.0447214
\(501\) 5.71199e14 0.808499
\(502\) 9.07717e13 0.127081
\(503\) 2.64333e14 0.366039 0.183019 0.983109i \(-0.441413\pi\)
0.183019 + 0.983109i \(0.441413\pi\)
\(504\) 4.42632e13 0.0606282
\(505\) −3.64377e14 −0.493683
\(506\) 2.72389e14 0.365058
\(507\) −8.76335e14 −1.16179
\(508\) −6.14329e14 −0.805658
\(509\) 8.09106e13 0.104968 0.0524841 0.998622i \(-0.483286\pi\)
0.0524841 + 0.998622i \(0.483286\pi\)
\(510\) 4.66139e13 0.0598245
\(511\) −5.30166e14 −0.673127
\(512\) −3.51844e13 −0.0441942
\(513\) 2.31554e13 0.0287744
\(514\) −9.64617e14 −1.18593
\(515\) −1.34447e14 −0.163535
\(516\) 1.44496e14 0.173893
\(517\) −1.24083e14 −0.147745
\(518\) 4.18369e14 0.492885
\(519\) −2.18970e14 −0.255249
\(520\) −2.37923e14 −0.274421
\(521\) −1.10833e14 −0.126491 −0.0632456 0.997998i \(-0.520145\pi\)
−0.0632456 + 0.997998i \(0.520145\pi\)
\(522\) −2.88330e14 −0.325613
\(523\) 6.91114e14 0.772308 0.386154 0.922434i \(-0.373803\pi\)
0.386154 + 0.922434i \(0.373803\pi\)
\(524\) −2.93325e14 −0.324360
\(525\) 5.42858e13 0.0594033
\(526\) −1.21894e15 −1.31995
\(527\) −1.08977e14 −0.116782
\(528\) 6.60268e13 0.0700219
\(529\) 1.26261e14 0.132514
\(530\) −2.55379e14 −0.265257
\(531\) 3.73067e14 0.383501
\(532\) 3.78019e13 0.0384591
\(533\) −1.70557e15 −1.71739
\(534\) 5.79750e14 0.577782
\(535\) 6.72884e14 0.663735
\(536\) 6.97555e14 0.681039
\(537\) 2.37412e14 0.229427
\(538\) −6.43161e13 −0.0615201
\(539\) 3.76776e14 0.356735
\(540\) 4.59165e13 0.0430331
\(541\) −2.02808e15 −1.88148 −0.940741 0.339125i \(-0.889869\pi\)
−0.940741 + 0.339125i \(0.889869\pi\)
\(542\) 9.79460e14 0.899478
\(543\) −9.30739e14 −0.846114
\(544\) 6.43663e13 0.0579248
\(545\) 8.00217e14 0.712897
\(546\) 4.13306e14 0.364512
\(547\) 2.06348e15 1.80165 0.900826 0.434180i \(-0.142962\pi\)
0.900826 + 0.434180i \(0.142962\pi\)
\(548\) −2.74656e14 −0.237408
\(549\) −4.64207e13 −0.0397250
\(550\) 8.09775e13 0.0686072
\(551\) −2.46241e14 −0.206551
\(552\) 2.61566e14 0.217228
\(553\) −6.17416e13 −0.0507680
\(554\) −8.88927e14 −0.723707
\(555\) 4.33996e14 0.349844
\(556\) 1.02823e15 0.820692
\(557\) −2.11828e15 −1.67409 −0.837047 0.547130i \(-0.815720\pi\)
−0.837047 + 0.547130i \(0.815720\pi\)
\(558\) −1.07346e14 −0.0840040
\(559\) 1.34923e15 1.04549
\(560\) 7.49601e13 0.0575170
\(561\) −1.20790e14 −0.0917770
\(562\) 1.26456e15 0.951458
\(563\) −1.16211e15 −0.865870 −0.432935 0.901425i \(-0.642522\pi\)
−0.432935 + 0.901425i \(0.642522\pi\)
\(564\) −1.19152e14 −0.0879159
\(565\) −4.14728e14 −0.303038
\(566\) 1.14420e15 0.827965
\(567\) −7.97637e13 −0.0571608
\(568\) −3.84024e14 −0.272548
\(569\) 1.19782e15 0.841927 0.420964 0.907077i \(-0.361692\pi\)
0.420964 + 0.907077i \(0.361692\pi\)
\(570\) 3.92139e13 0.0272978
\(571\) 1.46355e15 1.00904 0.504522 0.863399i \(-0.331669\pi\)
0.504522 + 0.863399i \(0.331669\pi\)
\(572\) 6.16524e14 0.420990
\(573\) 6.06757e14 0.410360
\(574\) 5.37358e14 0.359955
\(575\) 3.20793e14 0.212839
\(576\) 6.34034e13 0.0416667
\(577\) 1.97111e15 1.28305 0.641526 0.767101i \(-0.278302\pi\)
0.641526 + 0.767101i \(0.278302\pi\)
\(578\) 9.78949e14 0.631185
\(579\) −1.26310e15 −0.806688
\(580\) −4.88289e14 −0.308904
\(581\) −7.47101e14 −0.468177
\(582\) 3.22198e14 0.200007
\(583\) 6.61758e14 0.406932
\(584\) −7.59419e14 −0.462606
\(585\) 4.28744e14 0.258726
\(586\) −3.73539e14 −0.223305
\(587\) 3.58593e14 0.212369 0.106185 0.994346i \(-0.466137\pi\)
0.106185 + 0.994346i \(0.466137\pi\)
\(588\) 3.61806e14 0.212276
\(589\) −9.16767e13 −0.0532874
\(590\) 6.31792e14 0.363821
\(591\) 1.38607e15 0.790777
\(592\) 5.99279e14 0.338735
\(593\) −1.43925e15 −0.806003 −0.403001 0.915199i \(-0.632033\pi\)
−0.403001 + 0.915199i \(0.632033\pi\)
\(594\) −1.18983e14 −0.0660173
\(595\) −1.37132e14 −0.0753869
\(596\) 6.76258e14 0.368348
\(597\) 1.55475e14 0.0839079
\(598\) 2.44236e15 1.30603
\(599\) −3.41497e15 −1.80942 −0.904710 0.426028i \(-0.859912\pi\)
−0.904710 + 0.426028i \(0.859912\pi\)
\(600\) 7.77600e13 0.0408248
\(601\) 2.49987e15 1.30049 0.650245 0.759725i \(-0.274666\pi\)
0.650245 + 0.759725i \(0.274666\pi\)
\(602\) −4.25089e14 −0.219128
\(603\) −1.25702e15 −0.642090
\(604\) 1.91094e14 0.0967263
\(605\) 6.81764e14 0.341963
\(606\) 9.06685e14 0.450669
\(607\) −2.34097e13 −0.0115308 −0.00576538 0.999983i \(-0.501835\pi\)
−0.00576538 + 0.999983i \(0.501835\pi\)
\(608\) 5.41481e13 0.0264310
\(609\) 8.48229e14 0.410316
\(610\) −7.86138e13 −0.0376864
\(611\) −1.11258e15 −0.528573
\(612\) −1.15990e14 −0.0546121
\(613\) −1.82595e15 −0.852032 −0.426016 0.904716i \(-0.640083\pi\)
−0.426016 + 0.904716i \(0.640083\pi\)
\(614\) −2.87397e15 −1.32909
\(615\) 5.57429e14 0.255492
\(616\) −1.94243e14 −0.0882369
\(617\) −9.58777e14 −0.431667 −0.215834 0.976430i \(-0.569247\pi\)
−0.215834 + 0.976430i \(0.569247\pi\)
\(618\) 3.34548e14 0.149287
\(619\) −6.16431e13 −0.0272638 −0.0136319 0.999907i \(-0.504339\pi\)
−0.0136319 + 0.999907i \(0.504339\pi\)
\(620\) −1.81792e14 −0.0796932
\(621\) −4.71350e14 −0.204805
\(622\) −2.16281e15 −0.931477
\(623\) −1.70555e15 −0.728082
\(624\) 5.92027e14 0.250511
\(625\) 9.53674e13 0.0400000
\(626\) −3.15895e15 −1.31336
\(627\) −1.01614e14 −0.0418777
\(628\) 4.63315e14 0.189277
\(629\) −1.09632e15 −0.443976
\(630\) −1.35080e14 −0.0542275
\(631\) −3.38937e15 −1.34883 −0.674416 0.738352i \(-0.735604\pi\)
−0.674416 + 0.738352i \(0.735604\pi\)
\(632\) −8.84398e13 −0.0348902
\(633\) −6.00270e14 −0.234761
\(634\) −3.53672e15 −1.37123
\(635\) 1.87478e15 0.720602
\(636\) 6.35464e14 0.242146
\(637\) 3.37835e15 1.27626
\(638\) 1.26529e15 0.473890
\(639\) 6.92024e14 0.256960
\(640\) 1.07374e14 0.0395285
\(641\) 2.53363e15 0.924749 0.462375 0.886685i \(-0.346998\pi\)
0.462375 + 0.886685i \(0.346998\pi\)
\(642\) −1.67435e15 −0.605904
\(643\) −4.33651e15 −1.55589 −0.777946 0.628331i \(-0.783739\pi\)
−0.777946 + 0.628331i \(0.783739\pi\)
\(644\) −7.69493e14 −0.273736
\(645\) −4.40966e14 −0.155535
\(646\) −9.90586e13 −0.0346428
\(647\) −1.86323e15 −0.646090 −0.323045 0.946384i \(-0.604706\pi\)
−0.323045 + 0.946384i \(0.604706\pi\)
\(648\) −1.14255e14 −0.0392837
\(649\) −1.63715e15 −0.558139
\(650\) 7.26082e14 0.245449
\(651\) 3.15800e14 0.105856
\(652\) 1.55307e15 0.516213
\(653\) 5.87157e15 1.93523 0.967613 0.252440i \(-0.0812329\pi\)
0.967613 + 0.252440i \(0.0812329\pi\)
\(654\) −1.99120e15 −0.650783
\(655\) 8.95157e14 0.290116
\(656\) 7.69721e14 0.247379
\(657\) 1.36850e15 0.436149
\(658\) 3.50531e14 0.110786
\(659\) −1.57270e14 −0.0492920 −0.0246460 0.999696i \(-0.507846\pi\)
−0.0246460 + 0.999696i \(0.507846\pi\)
\(660\) −2.01498e14 −0.0626295
\(661\) −4.86756e15 −1.50039 −0.750193 0.661219i \(-0.770039\pi\)
−0.750193 + 0.661219i \(0.770039\pi\)
\(662\) 1.60050e15 0.489256
\(663\) −1.08306e15 −0.328342
\(664\) −1.07016e15 −0.321754
\(665\) −1.15362e14 −0.0343989
\(666\) −1.07992e15 −0.319362
\(667\) 5.01247e15 1.47014
\(668\) −2.40703e15 −0.700181
\(669\) 1.27991e15 0.369262
\(670\) −2.12877e15 −0.609140
\(671\) 2.03710e14 0.0578148
\(672\) −1.86525e14 −0.0525056
\(673\) −5.94031e14 −0.165854 −0.0829270 0.996556i \(-0.526427\pi\)
−0.0829270 + 0.996556i \(0.526427\pi\)
\(674\) 1.15993e14 0.0321220
\(675\) −1.40126e14 −0.0384900
\(676\) 3.69287e15 1.00614
\(677\) 3.03615e15 0.820513 0.410257 0.911970i \(-0.365439\pi\)
0.410257 + 0.911970i \(0.365439\pi\)
\(678\) 1.03198e15 0.276635
\(679\) −9.47864e14 −0.252036
\(680\) −1.96430e14 −0.0518095
\(681\) 2.78106e15 0.727615
\(682\) 4.71075e14 0.122258
\(683\) 2.38176e15 0.613174 0.306587 0.951843i \(-0.400813\pi\)
0.306587 + 0.951843i \(0.400813\pi\)
\(684\) −9.75767e13 −0.0249194
\(685\) 8.38184e14 0.212345
\(686\) −2.51185e15 −0.631265
\(687\) −8.80867e14 −0.219608
\(688\) −6.08905e14 −0.150596
\(689\) 5.93363e15 1.45584
\(690\) −7.98236e14 −0.194295
\(691\) 1.02015e15 0.246339 0.123170 0.992386i \(-0.460694\pi\)
0.123170 + 0.992386i \(0.460694\pi\)
\(692\) 9.22737e14 0.221052
\(693\) 3.50031e14 0.0831906
\(694\) −2.09938e14 −0.0495011
\(695\) −3.13792e15 −0.734049
\(696\) 1.21502e15 0.281989
\(697\) −1.40813e15 −0.324237
\(698\) 2.60593e15 0.595330
\(699\) −3.50070e15 −0.793470
\(700\) −2.28760e14 −0.0514447
\(701\) −9.47724e14 −0.211462 −0.105731 0.994395i \(-0.533718\pi\)
−0.105731 + 0.994395i \(0.533718\pi\)
\(702\) −1.06685e15 −0.236184
\(703\) −9.22280e14 −0.202586
\(704\) −2.78237e14 −0.0606408
\(705\) 3.63624e14 0.0786344
\(706\) −3.32135e15 −0.712671
\(707\) −2.66735e15 −0.567902
\(708\) −1.57210e15 −0.332122
\(709\) 1.41385e15 0.296380 0.148190 0.988959i \(-0.452655\pi\)
0.148190 + 0.988959i \(0.452655\pi\)
\(710\) 1.17195e15 0.243774
\(711\) 1.59371e14 0.0328948
\(712\) −2.44306e15 −0.500374
\(713\) 1.86617e15 0.379278
\(714\) 3.41228e14 0.0688185
\(715\) −1.88148e15 −0.376545
\(716\) −1.00045e15 −0.198690
\(717\) 3.23672e15 0.637895
\(718\) 4.42426e15 0.865280
\(719\) 7.85082e15 1.52372 0.761862 0.647739i \(-0.224285\pi\)
0.761862 + 0.647739i \(0.224285\pi\)
\(720\) −1.93492e14 −0.0372678
\(721\) −9.84196e14 −0.188121
\(722\) 3.64436e15 0.691299
\(723\) −2.76459e15 −0.520440
\(724\) 3.92213e15 0.732756
\(725\) 1.49014e15 0.276292
\(726\) −1.69645e15 −0.312168
\(727\) −6.17476e15 −1.12767 −0.563833 0.825889i \(-0.690674\pi\)
−0.563833 + 0.825889i \(0.690674\pi\)
\(728\) −1.74167e15 −0.315677
\(729\) 2.05891e14 0.0370370
\(730\) 2.31756e15 0.413767
\(731\) 1.11393e15 0.197384
\(732\) 1.95616e14 0.0344028
\(733\) −7.25819e15 −1.26694 −0.633471 0.773767i \(-0.718370\pi\)
−0.633471 + 0.773767i \(0.718370\pi\)
\(734\) −3.72342e15 −0.645081
\(735\) −1.10414e15 −0.189865
\(736\) −1.10224e15 −0.188125
\(737\) 5.51623e15 0.934483
\(738\) −1.38706e15 −0.233231
\(739\) 1.04737e16 1.74806 0.874030 0.485872i \(-0.161498\pi\)
0.874030 + 0.485872i \(0.161498\pi\)
\(740\) −1.82886e15 −0.302974
\(741\) −9.11120e14 −0.149822
\(742\) −1.86945e15 −0.305136
\(743\) 2.62290e15 0.424956 0.212478 0.977166i \(-0.431847\pi\)
0.212478 + 0.977166i \(0.431847\pi\)
\(744\) 4.52357e14 0.0727496
\(745\) −2.06377e15 −0.329460
\(746\) 2.15099e15 0.340860
\(747\) 1.92846e15 0.303353
\(748\) 5.09006e14 0.0794812
\(749\) 4.92573e15 0.763520
\(750\) −2.37305e14 −0.0365148
\(751\) 3.09275e15 0.472417 0.236208 0.971702i \(-0.424095\pi\)
0.236208 + 0.971702i \(0.424095\pi\)
\(752\) 5.02107e14 0.0761374
\(753\) 6.89298e14 0.103761
\(754\) 1.13452e16 1.69539
\(755\) −5.83173e14 −0.0865146
\(756\) 3.36123e14 0.0495027
\(757\) −5.54759e15 −0.811105 −0.405553 0.914072i \(-0.632921\pi\)
−0.405553 + 0.914072i \(0.632921\pi\)
\(758\) 4.25089e15 0.617020
\(759\) 2.06845e15 0.298068
\(760\) −1.65247e14 −0.0236406
\(761\) 1.79365e13 0.00254754 0.00127377 0.999999i \(-0.499595\pi\)
0.00127377 + 0.999999i \(0.499595\pi\)
\(762\) −4.66506e15 −0.657817
\(763\) 5.85784e15 0.820074
\(764\) −2.55687e15 −0.355382
\(765\) 3.53974e14 0.0488465
\(766\) 8.63391e15 1.18290
\(767\) −1.46794e16 −1.99680
\(768\) −2.67181e14 −0.0360844
\(769\) −1.07234e16 −1.43794 −0.718968 0.695043i \(-0.755385\pi\)
−0.718968 + 0.695043i \(0.755385\pi\)
\(770\) 5.92781e14 0.0789215
\(771\) −7.32506e15 −0.968305
\(772\) 5.32269e15 0.698612
\(773\) 6.56995e15 0.856199 0.428100 0.903732i \(-0.359183\pi\)
0.428100 + 0.903732i \(0.359183\pi\)
\(774\) 1.09727e15 0.141983
\(775\) 5.54786e14 0.0712797
\(776\) −1.35774e15 −0.173211
\(777\) 3.17699e15 0.402439
\(778\) −3.13947e15 −0.394883
\(779\) −1.18459e15 −0.147949
\(780\) −1.80672e15 −0.224064
\(781\) −3.03685e15 −0.373975
\(782\) 2.01643e15 0.246574
\(783\) −2.18950e15 −0.265862
\(784\) −1.52465e15 −0.183836
\(785\) −1.41392e15 −0.169295
\(786\) −2.22744e15 −0.264839
\(787\) −1.38290e16 −1.63279 −0.816394 0.577495i \(-0.804030\pi\)
−0.816394 + 0.577495i \(0.804030\pi\)
\(788\) −5.84088e15 −0.684833
\(789\) −9.25629e15 −1.07774
\(790\) 2.69897e14 0.0312068
\(791\) −3.03594e15 −0.348596
\(792\) 5.01391e14 0.0571727
\(793\) 1.82656e15 0.206839
\(794\) 2.06124e15 0.231801
\(795\) −1.93928e15 −0.216582
\(796\) −6.55172e14 −0.0726664
\(797\) −5.66909e15 −0.624442 −0.312221 0.950009i \(-0.601073\pi\)
−0.312221 + 0.950009i \(0.601073\pi\)
\(798\) 2.87058e14 0.0314018
\(799\) −9.18555e14 −0.0997925
\(800\) −3.27680e14 −0.0353553
\(801\) 4.40248e15 0.471757
\(802\) −6.58557e15 −0.700865
\(803\) −6.00546e15 −0.634761
\(804\) 5.29706e15 0.556066
\(805\) 2.34831e15 0.244837
\(806\) 4.22387e15 0.437389
\(807\) −4.88400e14 −0.0502310
\(808\) −3.82077e15 −0.390290
\(809\) 1.22726e16 1.24514 0.622572 0.782563i \(-0.286088\pi\)
0.622572 + 0.782563i \(0.286088\pi\)
\(810\) 3.48678e14 0.0351364
\(811\) 2.48630e15 0.248851 0.124426 0.992229i \(-0.460291\pi\)
0.124426 + 0.992229i \(0.460291\pi\)
\(812\) −3.57443e15 −0.355344
\(813\) 7.43777e15 0.734420
\(814\) 4.73908e15 0.464793
\(815\) −4.73959e15 −0.461715
\(816\) 4.88782e14 0.0472954
\(817\) 9.37093e14 0.0900661
\(818\) −1.90597e15 −0.181959
\(819\) 3.13854e15 0.297623
\(820\) −2.34900e15 −0.221262
\(821\) −1.90122e16 −1.77887 −0.889435 0.457062i \(-0.848902\pi\)
−0.889435 + 0.457062i \(0.848902\pi\)
\(822\) −2.08567e15 −0.193843
\(823\) 2.42079e15 0.223490 0.111745 0.993737i \(-0.464356\pi\)
0.111745 + 0.993737i \(0.464356\pi\)
\(824\) −1.40978e15 −0.129286
\(825\) 6.14923e14 0.0560175
\(826\) 4.62492e15 0.418518
\(827\) −1.83310e16 −1.64781 −0.823903 0.566731i \(-0.808208\pi\)
−0.823903 + 0.566731i \(0.808208\pi\)
\(828\) 1.98627e15 0.177366
\(829\) −7.71702e15 −0.684541 −0.342271 0.939601i \(-0.611196\pi\)
−0.342271 + 0.939601i \(0.611196\pi\)
\(830\) 3.26587e15 0.287786
\(831\) −6.75029e15 −0.590904
\(832\) −2.49480e15 −0.216949
\(833\) 2.78919e15 0.240952
\(834\) 7.80814e15 0.670092
\(835\) 7.34566e15 0.626261
\(836\) 4.28201e14 0.0362671
\(837\) −8.15162e14 −0.0685889
\(838\) 2.64413e15 0.221025
\(839\) −1.33884e16 −1.11183 −0.555914 0.831240i \(-0.687632\pi\)
−0.555914 + 0.831240i \(0.687632\pi\)
\(840\) 5.69228e14 0.0469624
\(841\) 1.10833e16 0.908428
\(842\) 4.98267e15 0.405738
\(843\) 9.60275e15 0.776862
\(844\) 2.52953e15 0.203309
\(845\) −1.12697e16 −0.899916
\(846\) −9.04813e14 −0.0717831
\(847\) 4.99073e15 0.393374
\(848\) −2.67784e15 −0.209704
\(849\) 8.68878e15 0.676031
\(850\) 5.99458e14 0.0463399
\(851\) 1.87739e16 1.44192
\(852\) −2.91618e15 −0.222534
\(853\) 3.99518e15 0.302912 0.151456 0.988464i \(-0.451604\pi\)
0.151456 + 0.988464i \(0.451604\pi\)
\(854\) −5.75478e14 −0.0433522
\(855\) 2.97780e14 0.0222886
\(856\) 7.05570e15 0.524728
\(857\) 1.50656e16 1.11324 0.556622 0.830766i \(-0.312097\pi\)
0.556622 + 0.830766i \(0.312097\pi\)
\(858\) 4.68173e15 0.343737
\(859\) −2.66635e16 −1.94516 −0.972579 0.232572i \(-0.925286\pi\)
−0.972579 + 0.232572i \(0.925286\pi\)
\(860\) 1.85823e15 0.134697
\(861\) 4.08056e15 0.293902
\(862\) −1.40884e16 −1.00826
\(863\) 1.36614e16 0.971486 0.485743 0.874102i \(-0.338549\pi\)
0.485743 + 0.874102i \(0.338549\pi\)
\(864\) 4.81469e14 0.0340207
\(865\) −2.81597e15 −0.197715
\(866\) −1.02992e16 −0.718547
\(867\) 7.43389e15 0.515361
\(868\) −1.33078e15 −0.0916742
\(869\) −6.99379e14 −0.0478744
\(870\) −3.70794e15 −0.252219
\(871\) 4.94611e16 3.34321
\(872\) 8.39088e15 0.563595
\(873\) 2.44669e15 0.163305
\(874\) 1.69632e15 0.112511
\(875\) 6.98120e14 0.0460136
\(876\) −5.76684e15 −0.377716
\(877\) −2.44903e16 −1.59403 −0.797016 0.603958i \(-0.793590\pi\)
−0.797016 + 0.603958i \(0.793590\pi\)
\(878\) −2.09112e16 −1.35257
\(879\) −2.83656e15 −0.182328
\(880\) 8.49111e14 0.0542387
\(881\) 9.28368e15 0.589322 0.294661 0.955602i \(-0.404793\pi\)
0.294661 + 0.955602i \(0.404793\pi\)
\(882\) 2.74746e15 0.173322
\(883\) 1.88185e16 1.17978 0.589890 0.807484i \(-0.299171\pi\)
0.589890 + 0.807484i \(0.299171\pi\)
\(884\) 4.56399e15 0.284352
\(885\) 4.79767e15 0.297059
\(886\) −1.76041e16 −1.08325
\(887\) −6.50887e14 −0.0398039 −0.0199020 0.999802i \(-0.506335\pi\)
−0.0199020 + 0.999802i \(0.506335\pi\)
\(888\) 4.55078e15 0.276576
\(889\) 1.37240e16 0.828937
\(890\) 7.45563e15 0.447548
\(891\) −9.03523e14 −0.0539029
\(892\) −5.39352e15 −0.319790
\(893\) −7.72734e14 −0.0455352
\(894\) 5.13533e15 0.300755
\(895\) 3.05314e15 0.177713
\(896\) 7.86013e14 0.0454711
\(897\) 1.85467e16 1.06637
\(898\) −8.19670e14 −0.0468402
\(899\) 8.66867e15 0.492350
\(900\) 5.90490e14 0.0333333
\(901\) 4.89884e15 0.274857
\(902\) 6.08692e15 0.339439
\(903\) −3.22802e15 −0.178918
\(904\) −4.34874e15 −0.239573
\(905\) −1.19694e16 −0.655397
\(906\) 1.45112e15 0.0789767
\(907\) 2.01411e16 1.08954 0.544770 0.838585i \(-0.316617\pi\)
0.544770 + 0.838585i \(0.316617\pi\)
\(908\) −1.17194e16 −0.630133
\(909\) 6.88514e15 0.367969
\(910\) 5.31515e15 0.282350
\(911\) −4.85179e15 −0.256184 −0.128092 0.991762i \(-0.540885\pi\)
−0.128092 + 0.991762i \(0.540885\pi\)
\(912\) 4.11187e14 0.0215808
\(913\) −8.46279e15 −0.441493
\(914\) −5.56422e14 −0.0288536
\(915\) −5.96974e14 −0.0307708
\(916\) 3.71197e15 0.190186
\(917\) 6.55283e15 0.333732
\(918\) −8.80801e14 −0.0445906
\(919\) 7.50130e15 0.377486 0.188743 0.982026i \(-0.439559\pi\)
0.188743 + 0.982026i \(0.439559\pi\)
\(920\) 3.36376e15 0.168264
\(921\) −2.18242e16 −1.08520
\(922\) −2.43782e16 −1.20499
\(923\) −2.72298e16 −1.33793
\(924\) −1.47503e15 −0.0720452
\(925\) 5.58122e15 0.270988
\(926\) −1.24335e16 −0.600111
\(927\) 2.54047e15 0.121892
\(928\) −5.12008e15 −0.244210
\(929\) −6.04589e15 −0.286664 −0.143332 0.989675i \(-0.545782\pi\)
−0.143332 + 0.989675i \(0.545782\pi\)
\(930\) −1.38048e15 −0.0650692
\(931\) 2.34640e15 0.109946
\(932\) 1.47519e16 0.687165
\(933\) −1.64239e16 −0.760547
\(934\) −3.91094e15 −0.180042
\(935\) −1.55336e15 −0.0710901
\(936\) 4.49571e15 0.204541
\(937\) 1.17484e16 0.531389 0.265694 0.964057i \(-0.414399\pi\)
0.265694 + 0.964057i \(0.414399\pi\)
\(938\) −1.55833e16 −0.700717
\(939\) −2.39883e16 −1.07235
\(940\) −1.53231e15 −0.0680994
\(941\) −5.89103e15 −0.260284 −0.130142 0.991495i \(-0.541543\pi\)
−0.130142 + 0.991495i \(0.541543\pi\)
\(942\) 3.51830e15 0.154544
\(943\) 2.41134e16 1.05304
\(944\) 6.62482e15 0.287626
\(945\) −1.02577e15 −0.0442766
\(946\) −4.81519e15 −0.206639
\(947\) 2.96672e15 0.126576 0.0632881 0.997995i \(-0.479841\pi\)
0.0632881 + 0.997995i \(0.479841\pi\)
\(948\) −6.71590e14 −0.0284878
\(949\) −5.38477e16 −2.27093
\(950\) 5.04294e14 0.0211448
\(951\) −2.68570e16 −1.11960
\(952\) −1.43793e15 −0.0595985
\(953\) 1.10371e15 0.0454826 0.0227413 0.999741i \(-0.492761\pi\)
0.0227413 + 0.999741i \(0.492761\pi\)
\(954\) 4.82556e15 0.197711
\(955\) 7.80295e15 0.317863
\(956\) −1.36395e16 −0.552433
\(957\) 9.60832e15 0.386930
\(958\) −1.39492e16 −0.558520
\(959\) 6.13577e15 0.244268
\(960\) 8.15373e14 0.0322749
\(961\) −2.21811e16 −0.872980
\(962\) 4.24928e16 1.66285
\(963\) −1.27146e16 −0.494719
\(964\) 1.16500e16 0.450714
\(965\) −1.62436e16 −0.624858
\(966\) −5.84334e15 −0.223505
\(967\) −1.84533e15 −0.0701826 −0.0350913 0.999384i \(-0.511172\pi\)
−0.0350913 + 0.999384i \(0.511172\pi\)
\(968\) 7.14881e15 0.270346
\(969\) −7.52227e14 −0.0282858
\(970\) 4.14349e15 0.154925
\(971\) −1.46125e16 −0.543273 −0.271636 0.962400i \(-0.587565\pi\)
−0.271636 + 0.962400i \(0.587565\pi\)
\(972\) −8.67624e14 −0.0320750
\(973\) −2.29706e16 −0.844405
\(974\) −2.13181e16 −0.779245
\(975\) 5.51368e15 0.200409
\(976\) −8.24326e14 −0.0297937
\(977\) 1.87225e16 0.672891 0.336445 0.941703i \(-0.390775\pi\)
0.336445 + 0.941703i \(0.390775\pi\)
\(978\) 1.17936e16 0.421486
\(979\) −1.93196e16 −0.686585
\(980\) 4.65285e15 0.164428
\(981\) −1.51206e16 −0.531362
\(982\) −7.16215e14 −0.0250282
\(983\) 2.79209e16 0.970253 0.485126 0.874444i \(-0.338774\pi\)
0.485126 + 0.874444i \(0.338774\pi\)
\(984\) 5.84507e15 0.201984
\(985\) 1.78250e16 0.612533
\(986\) 9.36668e15 0.320083
\(987\) 2.66184e15 0.0904562
\(988\) 3.83945e15 0.129750
\(989\) −1.90754e16 −0.641054
\(990\) −1.53012e15 −0.0511368
\(991\) 2.46391e16 0.818878 0.409439 0.912337i \(-0.365724\pi\)
0.409439 + 0.912337i \(0.365724\pi\)
\(992\) −1.90623e15 −0.0630030
\(993\) 1.21538e16 0.399475
\(994\) 8.57903e15 0.280423
\(995\) 1.99943e15 0.0649948
\(996\) −8.12653e15 −0.262711
\(997\) 4.80148e16 1.54366 0.771831 0.635828i \(-0.219341\pi\)
0.771831 + 0.635828i \(0.219341\pi\)
\(998\) 1.56002e15 0.0498783
\(999\) −8.20065e15 −0.260758
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 30.12.a.a.1.1 1
3.2 odd 2 90.12.a.j.1.1 1
4.3 odd 2 240.12.a.d.1.1 1
5.2 odd 4 150.12.c.g.49.1 2
5.3 odd 4 150.12.c.g.49.2 2
5.4 even 2 150.12.a.h.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.12.a.a.1.1 1 1.1 even 1 trivial
90.12.a.j.1.1 1 3.2 odd 2
150.12.a.h.1.1 1 5.4 even 2
150.12.c.g.49.1 2 5.2 odd 4
150.12.c.g.49.2 2 5.3 odd 4
240.12.a.d.1.1 1 4.3 odd 2