Properties

Label 2-30-1.1-c11-0-0
Degree $2$
Conductor $30$
Sign $1$
Analytic cond. $23.0502$
Root an. cond. $4.80107$
Motivic weight $11$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 32·2-s − 243·3-s + 1.02e3·4-s − 3.12e3·5-s + 7.77e3·6-s − 2.28e4·7-s − 3.27e4·8-s + 5.90e4·9-s + 1.00e5·10-s − 2.59e5·11-s − 2.48e5·12-s − 2.32e6·13-s + 7.32e5·14-s + 7.59e5·15-s + 1.04e6·16-s − 1.91e6·17-s − 1.88e6·18-s − 1.61e6·19-s − 3.20e6·20-s + 5.55e6·21-s + 8.29e6·22-s + 3.28e7·23-s + 7.96e6·24-s + 9.76e6·25-s + 7.43e7·26-s − 1.43e7·27-s − 2.34e7·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.514·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.485·11-s − 0.288·12-s − 1.73·13-s + 0.363·14-s + 0.258·15-s + 1/4·16-s − 0.327·17-s − 0.235·18-s − 0.149·19-s − 0.223·20-s + 0.297·21-s + 0.343·22-s + 1.06·23-s + 0.204·24-s + 1/5·25-s + 1.22·26-s − 0.192·27-s − 0.257·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 30 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(30\)    =    \(2 \cdot 3 \cdot 5\)
Sign: $1$
Analytic conductor: \(23.0502\)
Root analytic conductor: \(4.80107\)
Motivic weight: \(11\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 30,\ (\ :11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(0.6147915608\)
\(L(\frac12)\) \(\approx\) \(0.6147915608\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{5} T \)
3 \( 1 + p^{5} T \)
5 \( 1 + p^{5} T \)
good7 \( 1 + 3268 p T + p^{11} T^{2} \)
11 \( 1 + 259128 T + p^{11} T^{2} \)
13 \( 1 + 2323462 T + p^{11} T^{2} \)
17 \( 1 + 1918266 T + p^{11} T^{2} \)
19 \( 1 + 1613740 T + p^{11} T^{2} \)
23 \( 1 - 32849208 T + p^{11} T^{2} \)
29 \( 1 - 152590290 T + p^{11} T^{2} \)
31 \( 1 - 56810072 T + p^{11} T^{2} \)
37 \( 1 - 571517354 T + p^{11} T^{2} \)
41 \( 1 - 734063082 T + p^{11} T^{2} \)
43 \( 1 + 580696612 T + p^{11} T^{2} \)
47 \( 1 - 478846584 T + p^{11} T^{2} \)
53 \( 1 + 2553787902 T + p^{11} T^{2} \)
59 \( 1 - 6317920440 T + p^{11} T^{2} \)
61 \( 1 + 786138178 T + p^{11} T^{2} \)
67 \( 1 + 21287683396 T + p^{11} T^{2} \)
71 \( 1 - 11719480032 T + p^{11} T^{2} \)
73 \( 1 - 23175633458 T + p^{11} T^{2} \)
79 \( 1 - 2698969640 T + p^{11} T^{2} \)
83 \( 1 - 32658710748 T + p^{11} T^{2} \)
89 \( 1 - 74556330210 T + p^{11} T^{2} \)
97 \( 1 - 41434868834 T + p^{11} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.81286159927826928936801083914, −12.88332622629114958687141698499, −11.84637099190547518994686994506, −10.56379617623833385569862968324, −9.449601670584493376831451601766, −7.78671241662167182928633981063, −6.60870957944901872558320923620, −4.82762000785244880135770369650, −2.67612481489988158135922709810, −0.57430365646275643503559246430, 0.57430365646275643503559246430, 2.67612481489988158135922709810, 4.82762000785244880135770369650, 6.60870957944901872558320923620, 7.78671241662167182928633981063, 9.449601670584493376831451601766, 10.56379617623833385569862968324, 11.84637099190547518994686994506, 12.88332622629114958687141698499, 14.81286159927826928936801083914

Graph of the $Z$-function along the critical line